روش شبیه‌سازی هیدرودینامیک ذرات هموار (SPH) و کاربرد‌های آن در هوافضا

نوع مقاله: علمی- ترویجی

نویسنده

دانشجوی دکتری، دانشگده هوافضای شریف

چکیده

روش هیدرودینامیک ذرات هموار (SPH) یک روش عددی بدون شبکة نسبتاً جدید است که در چند دهة گذشته توجه زیادی را به خود جلب کرده است. روش SPH در مقایسه با روش‌های متداول دینامیک سیالات محاسباتی مبتنی بر شبکه، دارای برخی مزایای خاص در مد‌‌‌‌‌ل‌سازی جریان‌های چندفازی و فیزیک‌های پیچیده است. SPH، در واقع همچنان یک روش CFD در حال توسعه است. در این مطالعه سعی شده است که نحوة تکامل SPH، مزایا، معایب، مراحل به‌کارگیری و کاربرد‌های صنعتی  (با تأکید بیشتر بر روی کاربرد‌های هوافضا) مطرح شود.

کلیدواژه‌ها


[1] Shadloo, M.S., Oger, G. and Le Touzé, D., “Smoothed Particle Hydrodynamics Method for Fluid Flows, towards Industrial Applications: Motivations, Current State, and Challenges,” Computers and Fluids, Vol. 136, 2016, pp. 11-34.

[2] Liu, G.R., and Liu, M.B., Smoothed Particle Hydrodynamics: a Meshfree Particle Method, World Scientific, 3rd printing, 2003.

[3] Ancona, M.G., “Fully-Lagrangian and Lattice-Boltzmann Methods for Solving Systems of Conservation Equations,” Journal of  Computational Physics, Vol. 115, No. 1, 1994, pp. 107-120.

[4] Kang, D.J., Bae, S.S. and Kim, J.W., “Navier-Stokes Simulation of the MIT Flapping Foil Experiment Using an Unstructured Finite Volume Method,” ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, Indiana, USA, 1999.

[5] Chung, T.J., Computational Fluid Dynamic, Cambridge University Press, Cambridge, 2002.

[6] Anderson, J.D., Computational Fluid Dynamics: the Basics with Applications, McGraw Hill, New York, 2002.

[7] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Butterworth-Heinemann, Stonham, 2000.

[8] Liu, G.R., Meshfree Methods: Moving beyond the Finite Element Method, CRC Press, Boca Raton, 2002.

[9] Hirsch, C., Numerical Computation of Internal & External Flows: Fundamentals of Numerical Discretization, Wiley, NewYork, 1988.

[10] Liu, G.R. and Gu, Y.T., An Introduction to Meshfree Methods and Their Programming, Springer, Dordrecht, 2005.

[11] Zukas, J.A., High Velocity Impact Dynamics, Wiley, NewYork, 1990.

[12] Hockney, R.W. and Eastwood, J.W., Computer Simulation using Particles, Institute of Physics Publishing, Bristol, 1988.

[13] Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.

[14] Frazer, R.A., Jones, W., Skan, S.W. and Britain, G., Approximations to Functions and to the Solutions of Differential Equations, Great Britain Aero Counc, London, Report and Memo. No. 1799, 1937.

[15] Liu, M. and Liu, G., “Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments,” Archives of Computational Methods in Engineering, Vol. 17, No.1, 2010, pp. 25-76.

[16] Rezavand, M., Numerical Simulation of Motion of a Single Bubble in a Simple Shear Flow, Using Smoothed Particle Hydrodynamics (SPH), (M.Sc. Thesis), Science and Research Branch of the Islamic Azad University, Iran, 2015 (In Persian).

[17] Hu, X. and Adams, N.A., “A Multi-phase SPH Method for Macroscopic and Mesoscopic Flows,” Journal of Computational Physics, Vol. 213, No.2, 2006, pp. 844-861.

[18] Khayyer, A., Gotoh, H. and Shao, S., “Corrected Incompressible SPH Method for Accurate Water-surface Tracking in Breaking Waves,” Coastal Engineering, Vol. 55, No. 3, 2008, pp. 236-250.

[19] Monaghan, J., “Smoothed Particle Hydrodynamics and its Diverse Applications,” Annual Review of Fluid Mechanics, Vol. 44, 2012, pp. 323-346.

[20] Lucy, L.B., “A Numerical Approach to the Testing of the Fission Hypothesis,” Astronomical Journal, Vol. 82, 1977, pp. 1013-1024.

[21] Gingold, R. A. and Monaghan, J. J., “Smoothed Particle Hydrodynamics-Theory and Application to Non-spherical Stars,” Astronomical Monthly Notices of the Royal Astronomical Society, Vol. 181, 1977, pp. 375-389.

[22] Liu, M.B., Liu, G.R. and Lam, K.Y., “Constructing Smoothing Functions in Smoothed Particle Hydrodynamics with Applications,”Journal of Computational and Applied Mathematics, Vol. 155, No. 2, 2003, pp. 263–284.

[23] Fulk, D.A. and Quinn, D.W., “An Analysis of 1-D Smoothed Particle Hydrodynamics Kernels,” Journal of Computational Physics, Vol. 126, No. 1, 1996, pp. 165–180.

[24] Gingold, R.A. and Monaghan, J.J., “Kernel Estimates as a Basis for General Particle Method in Hydrodynamics,” Journal of Computational Physics, Vol. 46, 1982, pp. 429–453.

[25] Swegle, J.W., Hicks, D.L. and Attaway, S.W., “Smoothed Particle Hydrodynamics Stability Analysis,” Journal of Computational Physics, Vol. 116, No.1, 1995, pp. 123–134.

[26] Morris, J.P., Analysis of Smoothed Particle Hydrodynamics with Applications, (Ph.D. Thesis), Monash University, Melbourne, Australia, 1996.

[27] Monaghan, J., “Why Particle Methods Work,” SIAM Journal on Scientific and Statistical Computing, Vol. 3, No. 4, 1982, pp. 422–433.

[28] Monaghan, J., “Particle Methods for Hydrodynamics,” Computer Physics Reports, Vol. 3, 1985, pp. 71–124.

[29] Monaghan, J., “Smooth Particle Hydrodynamics,” Computer Physics Reports, Vol. 30, 1992, pp. 543–574.

[30] Johnson, G.R., “Artificial Viscosity Effects for SPH Impact Computations,” International Journal of Impact Engineering, Vol. 18, No. 5, 1996, pp. 477–488.

[31] Johnson, G.R. and Beissel, S.R., “Normalized Smoothing Functions for SPH Impact Computations,” International Journal for Numerical Methods in Engineering, Vol. 39, No. 16, 1996, pp. 2725–2741.

[32] Randles, P.W. and Libersky, L.D., “Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications,”  Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1, 1996, pp. 375–408.

[33] Chen, J.K., Beraun, J.E. and Carney, T.C.,  “A Corrective Smoothed Particle Method for Boundary Value Problems in Heat Conduction,”  International Journal for Numerical Methods in Engineering, Vol. 46, 1999, pp. 231–252.

[34] Chen, J.K. and Beraun, J.E., “A Generalized Smoothed Particle Hydrodynamics Method for Nonlinear Dynamic Problems,”  Computer Methods in Applied Mechanics and Engineering, Vol. 190, 1999, pp. 225–239.

[35] Liu, M.B., Liu, G.R. and Lam, K.Y., “A One-dimensional Meshfree Particle Formulation for Simulating Shock Waves,” Journal of Computational and Applied Mathematics, Vol. 13, No. 3, 2003, pp. 201–211.

[36] Liu, M.B. and Liu, G.R., “Restoring Particle Consistency in Smoothed Particle Hydrodynamics,” Applied Numerical Mathematics, Vol. 56, No. 1, 2006, pp. 19–36.

[37] Liu, M.B., Xie, W.P. and Liu, G.R., “Modeling Incompressible Flows Using a Finite Particle Method,”  Applied Mathematical Modeling, Vol. 29, No. 12, 2005, pp. 1252–1270.

[38] Batra, R.C. and Zhang, G.M., “Analysis of Adiabatic Shear Bands in Elasto-thermo-viscoplastic Materials by Modified Smoothed Particle Hydrodynamics (MSPH) Method,” Journal of Computational Physics, Vol. 201, No. 1, 2004, pp. 172–190.

[39] Fang, J.N., Owens, R.G., Tacher, L. and Parriaux, A., “A Numerical Study of the SPH Method for Simulating Transient Viscoelastic Free Surface Flows,” Journal of  Non-Newton Fluid,  Vol. 139, No. 1-2, 2006, pp. 68–84.

[40] Fang, J.N. and Parriaux, A., “A regularized Lagrangian Finite Point Method for the Simulation of Incompressible Viscous Flows”,  Journal of Computational Physics, Vol. 227, No. 20, 2008, pp. 8894–8908.

[41] Fang, J.N., Parriaux, A., Rentschler, M. and Ancey, C., “Improved SPH Methods for Simulating Free Surface Flows of Viscous Fluids,” Journal of Non-Newton Fluid,  Vol. 59, No. 2, 2009, pp. 251–271.

[42] Dyka, C.T. and Ingel, R.P., “An Approach for Tension Instability in Smoothed Particle Hydrodynamics (SPH),” Applied Numerical Mathematics,  Vol. 57, No. 4, 1995, pp. 573–580.

[43] Dyka, C.T., Randles P.W. and Ingel, R.P., “Stress Points for Tension Instability in SPH,” International Journal for Numerical Methods in Engineering, Vol. 40, No. 13, 1997, pp. 2325–2341.

[44] Randles, P.W. and Libersky, L.D., “Normalized SPH with Stress Points,”  International Journal for Numerical Methods in Engineering,  Vol. 48, No. 10, 2000, pp. 1445–1462.

[45] Vignjevic, R. and Campbell, J., “A Treatment of Zeroenergy Modes in the Smoothed Particle Hydrodynamics Method,”  Computer Methods in Applied Mechanics and Engineering,  Vol. 184, No. 1, 2000, pp. 67–85.

[46] Lehnart, A., Fleissner, F., and Eberhard, P., “Using SPH in a Co-simulation Approach to Simulate Sloshing in Tank Vehicles,”  9th International SPHERIC Workshop, Paris, France, 2014, pp. 240–245.

[47] Barcarolo, D., Candelier, J., Guibert, D. and de Leffe, M., “Hydrodynamic Performance Simulations Using SPH for Automotive Applications,”  9th International SPHERIC Workshop, Paris, France, 2014, pp. 321–326.

[48] Grenier, N., Le Touzé, D., Colagrossi, A., Antuono, M., and Colicchio, G., “Viscous Bubbly Flows Simulation with an Interface SPH Model,” Ocean Eng., 2013, Vol. 69, pp.88–102.

[49] Shadloo, M., Rahmat, A. and Yildiz, M.A., “Smoothed Particle Hydrodynamics Study on the Electrohydrodynamic Deformation of a Droplet Suspended in a Neutrally Buoyant Newtonian Fluid,” Computational Mechanics, Vol. 52, No. 3, 2013, pp. 693–707.

[50] Sussman, M., Smereka, P. and Osher, S. “A Level Set Approach for Computing Solutions to Incompressible Two-phase Flow,” Journal of Computational Physics, Vol. 114, No.1, 1994, pp.146–59.

[51] Violeau, D., Buvat, C., Abed-Meraïm, K. and De Nanteuil, E., “Numerical Modeling of Boom and Oil Spill with SPH,” Coastal Engineering, Vol. 54, No.12, 2007, pp.895–913.

[52] Koukouvinis, P.K., Anagnostopoulos, J.S. and Papantonis, D.E., “SPH Method Used for Flow Predictions at a Turbo Impulse Turbine: Comparison with Fluent,” World Academy of Science, Eng. & Tech., Vol. 79, No.55, 2011, pp.659–666.

[53] Cleary, P., Ha, J., Prakash, M., and Nguyen, T., “3D SPH Flow Predictions and Validation for High Pressure Die Casting of Automotive Components,” Applied Mathematical Modeling, Vol. 30, No.11, 2006, pp.1406–1427.

[54] Cleary, P.W. and Morrison, R.D., “Prediction of 3D Slurry Flow within the Grinding Chamber and Discharge from a Pilot Scale Sag Mill,” Minerals Engineering, Vol. 39, 2012, pp.174–195.

[55] Lacome, J-L., Limido, J. and Espinosa, C., “SPH Formulation with Lagrangian Eulerian Adaptive Kernel”, 4th International SPHERIC Workshop, Nantes, France, 2009, pp. 294–301.

[56] Cercos-Pita J.L., “AQUAgpusph, a New Free 3D SPH Solver Accelerated with Opencl,” C
Computer Physics Communications
, Vol. 192, 2015, pp. 295–312.

[57] Altomare, C. and et al. “Numerical Modelling of Armour Block Sea Breakwater with Smoothed Particle Hydrodynamics,” Computers & Structures, Vol. 130, 2014, pp. 34–45. 

[58] Marrone, S. and et al. “δ-sph Model for Simulating Violent Impact Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 200, No.13, 2011, pp. 526–542.

[59] Domínguez J.M. and et al. “New Multi-GPU Implementation for Smoothed Particle Hydrodynamics on Het-erogenous Clusters,” Computer Physics Communications, Vol. 184, No. 8, 2013, pp. 1848–1860.

[60] Vacondio, R., Mignosa, P., and Pagani, S., “3D SPH Numerical Simulation of the Wave Generated by the Vajont Rockslide,” Advances in Water Resources, Vol. 59, 2013, pp. 146–156.

[61] Fasanella, E.L. and Jackson, K.E., “Impact Testing and Simulation of a Crashworthy Composite Fuselage Section with Energy-absorbing Seats and Dummies,” Journal of the American Helicopter Society, Vol. 49, No. 2, 2004, pp. 140–148.

[62] Ortiz, R., Charles, J. and Sobry, J., “Structural Loading of a Complete Aircraft under Realistic Crash Conditions: Generation of a Load Database for Passenger Safety and Innovative Design,” Office National D Etudes Et De Recherches Aerospatiales Onera-Publications-Tp, 2004.

[63] Guibert, D., de Leffe, M., Oger, G. and Piccinali, J-C., “Efficient Parallelization of 3D SPH Schemes”, 7th International SPHERIC Workshop, Prato, Italy. SPHERIC, 2012, pp. 259–265.

[64] Siemann, M.H., and Groenenboom P.H.L., “Modeling and Validation of Guided Ditching Tests Using a Coupled SPH-FE Approach”, 9th International SPHERIC Work- shop, Paris, France. SPHERIC, 2014, pp. 260–267.

[65] Benítez, L., Máñez, H., Siemann, M. and Kohlgrueber, D., “Ditching Numerical Simulations: Recent Steps in Industrial Applications,” Aerospace Structural Impact Dynamics International Conference, Wichita, Kansa, 2012, pp. 12–40.

[66] Toso, N.R.S., Contribution to the Modelling and Simulation of Aircraft Structures Impacting on Water, (Ph.D. Thesis), Universität Stuttgart, 2009.

[67] Hughes, K. et al. “From Aerospace to Offshore: Bridging the Numerical Simulation Gaps–simulation Advancements for F structure Interaction Problem,s” International Journal of Impact Engineering, Vol. 61, 2013, pp.48–63.

[68] Shadloo, M.S., Zainali, M. and Yildiz, M., “Improved Solid Boundary Treatment Method for the Solution of Flow over an Airfoil and Square Obstacle by SPH Method,” 5th International SPHERIC Workshop, Manchester, UK. SPHERIC, 2010, pp. 37–41.

[69] González, L.M. and et al. “WSPH and ISPH Calculations of a Counter-rotating Vortex Dipole”, 5th International SPHERIC Workshop, Manchester, UK. SPHERIC, 2010, pp. 158–65.

[70] Groenenboom, P.H.L., “SPH for Two-phase Fluid Flow Including Cavitations,” 7th International SPHERIC Workshop, Prato, Italy. SPHERIC, 2012, pp. 333–339.

[71] Gambioli, F., “Fuel Loads in Large Civil Airplanes,” 4th International SPHERIC Workshop, Nantes, France, SPHERIC, 2009, pp. 246–53.

[72] He, X., Zhu, Q., and Chen, L., “Fast Particle Hydrodynamics for Battlefield Visualization,” International Journal of Advanced Computer Technology, Vol. 4, No. 21, 2012, pp. 371–379.