مطالعه عددی تزریق متقاطع در جریان مافوق صوت محفظة احتراق موتور اسکرمجت

نوع مقاله: علمی- ترویجی

نویسندگان

1 گروه هوافضا، دانشگاه تربیت مدرس

2 دانشیار گروه هوافضا- دانشگاه تربیت مدرس

چکیده

امروزه تحقیقات بسیاری جهت توسعه موتورهای هوا- تنفسی اسکرمجت صورت می‌پذیرد. موتورهای اسکرمجت از اکسیژن موجود در اتمسفر به عنوان اکسیدکننده استفاده می‌نمایند که به دلیل نداشتن مخازن اکسیدکننده، وزن این سیستم‌ها در مقایسه با سیستم‌های موشکی کمتر می‌باشد. موفقیت یک سیستم پیشرانشی هوا-تنفسی، بستگی زیادی به قابلیت ترکیب شدن مناسب سوخت با هوا دارد. در مورد سیستم‌های پروازی هوا- تنفسی ماورای صوتی، به دلیل نیاز به احتراق مافوق صوت، چالش‌های مربوط به ترکیب شدن سوخت و هوا افزایش می‌یابند. سرعت‌های جریان درون محفظة احتراق این‌گونه موتورها از مرتبه چند هزار متر بر ثانیه است که در نتیجه زمان اقامت مخلوط جهت اختلاط سوخت و هوا بسیار کوتاه می‌باشد. در تحقیق حاضر، حوزه جریان دو-بعدی تزریق جت متقاطع به درون هوای مافوق صوت به صورت عددی با استفاده از نرم‌افزار فلوئنت بررسی شده است. معادلات دو-بعدی ناویر-استوکس به همراه مدل آشفتگی دو- معادله‌ای k-ω sst و معادله حالت گاز کامل حل شده‌اند و نتایج حاصل از شبیه‌سازی عددی با نتایج تجربی مقایسه و اعتبارسنجی شده‌اند.

کلیدواژه‌ها


[1] Tran, K., One Dimensional Analysis Program for Scramjet and Ramjet Flowpaths, (Ph.D. Thesis), Virginia Polytechnic Institute and State University, December 2010.

[2] Ogawa, H., Boyce, R. R., Isaacs, A. and Ray, T., “Multi-Objective Design Optimisation of Inlet and Combustor for Axisymmetric Scramjets,” Journal of the Open Thermodynamics, Vol. 4, pp. 86-91, 2010.

[3] Tourani, C., Computational Simulation of Scramjet Combustors – A Comparison between Quasi-One Dimensional and 2-D Numerical Simulations, (M.Sc. Thesis), University of Kansas, 2011.

[4] Hyslop, P., CFD Modelling of Supersonic Combustion in a Scramjet Engine, (M.Sc. Thesis), Department of Engineering Australian National University, 1998. 

[5] Ukai, T. and et al., “Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow,” Journal of Experimental Thermal and Fluid Science, Vol. 52, 2014, pp. 59-67.

[6] Seiner, J. M., Dash, S. M. and Kenzakowski, D. C., “Historical survey on enhanced mixing in scramjet engines,” Journal of Propulsion and Power, Vol. 17, No.6, 2001, pp. 1273-1286.

[7] Segal, C. and Corin, S., The scramjet engine: processes and characteristics, Published in the United States of America by Cambridge University Press, New York, 2009.

[8] Sakima, F., et al., “Mixing of a hydrogen jet from a wedge shaped injector into a supersonic cross flow,” Journal of Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 46, No. 154, 2004, pp. 217-223.

[9] Hassan, E., et al., “Supersonic jet and crossflow interaction: Computational modeling,” Journal of Progress in Aerospace Sciences, Vol. 57, 2013, pp. 1-24. 

[10] Glagolev, A.I., Zubkov A.I. and Panov, A., “Supersonic flow past a gas jet obstacle emerging from a plate,” Journal of Fluid Dynamics,  Vol. 2, No.3, 1967, pp. 60-64.

[11] Glagolev, A. I., Zubkov, A. I. and Panov, A., “Interaction between a supersonic flow and gas issuing from a hole in a plate,” Journal of Fluid Dynamics, Vol. 3, No. 2, 1968, pp. 65-67.

[12] Wang, G. L., Chen, L. W. and Lu, X. Y., “Effects of the injector geometry on a sonic jet into a supersonic crossflow,” Journal of Science China Physics, Mechanics & Astronomy, Vol. 56, No. 2, 2013, pp. 366-377.

[13] Huang, W., Liu, J., Jin, L. and Yan, L., “Molecular weight and injector configuration effects on the transverse injection flow field properties in supersonic flows,” Journal of Aerospace Science and Technology, Vol. 32, 2014, pp. 94-102.

[14] Aso, S., Inoue, K., Yamaguchi, K. and Tani, Y., “A study on supersonic mixing by circular nozzle with various injection angles for air breathing engine,” Journal of Acta Astronautica, Vol. 65, 2009, pp. 687-695.

[15] Huang, W. and et al., “Parametric effects in a scramjet engine on the interaction between the air stream and the injection,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 226, 2012, pp. 294-309.

[16] Huang, W., “Effect of jet-to-crossflow pressure ratio arrangement on turbulent mixing in a flowpath with square staged injectors,” Journal of Fuel, Vol. 144, 2015, pp. 164-170.

[17] Schetz, J. A., Maddalena, L. and Burger, S. K., “Molecular weight and shock-wave effects on transverse injection in supersonic flow,” Journal of Propulsion and Power, Vol. 26, No. 5, 2010, pp. 1102-1113.

[18] Yan, L., Huang, W., Li, H. and Zhang, T., “Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields,” Journal of Acta Astronautica, Vol. 127, 2016, pp. 321-325.

[19] Papamoschou, D., Hubbard, D. G. and Lin, M., “Observations of Supersonic Transverse Jets,” in Space Manufacturing 8-Energy and Materials from Space, AIAA paper 91-1723, 1991.

[20] Kumar Dixit, D. S., Kumar, C. R. and Badholiya, S., “Mathematical Modeling and Analysis of Different Type of Fuel Injector in Scramjet Engine Using CFD Simulation in Fluent,” International Journal for Research in Applied Science & Engineering Technology (IJRASET), Vol. 5, No. 2, February 2017.

[21] Sankaran, A., Sundararaj, K. and Santhanakrishnan, R., “Certain Investigations of Numerical Simulation on Supersonic Combustor of Staged Transverse Injection behind a Backward Facing Step with Cavity,” Asian Journal of Research in Social Sciences and Humanities, Vol. 7, No. 2, pp. 603-614, February 2017.

[22] Mishra, D. P. and Sridhar, K. V., “Numerical Study of Effect of Fuel Injection Angle on the Performance of a 2D Supersonic Cavity Combustor,” Journal of Aerospace Engineering, Vol. 25, No. 2, April 2012, pp. 161-167.

[23] Nithish Reddy, P. and Venkatasubbaiah, K., “Numerical Investigations on Development of Scramjet Combustor,”  Journal of Aerospace Engineering , Vol. 28, No. 5, 04014120-1-7, 2015.

[24] Chen, B., Xu, X., Wei, B. and Zhang, Y., “Numerical simulations of turbulent flows in aeroramp injector/gas-pilot flame scramjet,” Chinese Journal of Aeronautics, CJA 873, 2017.

[25] Lee, J., Lin, K.-C. and Eklund, D., “Challenges in fuel injection for high-speed propulsion systems,” AIAA Journal, Vol. 53, 2015, pp. 1405-1423.

[26] Garrick, D. P., Hagen, W. A. and Regele, J. D., “An interface capturing scheme for modeling atomization in compressible flows,” Journal of Computational Physics, vol. 344, 2017, pp. 260-280.

[27] Xiao, F., et al., “Large eddy simulation of liquid jet primary breakup in supersonic air crossflow,” International Journal of Multiphase Flow, vol. 87, 2016, pp. 229-240.

[28] Liu, H., Guo, Y. and Lin, W., “Numerical simulations of transverse liquid jet to a supersonic crossflow using a pure two-fluid model,” Advances in Mechanical Engineering, vol. 8, no. 1, 2016, pp. 1-13.

[29] Aso, S., Okuyama, S., Kawai, M. and Ando, Y., “Experimental study on mixing phenomena in supersonic flows with slot injection,” 29th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 91-0016, 1991. 

[30] Wilcox, D. C., Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.