بررسی و کاربرد سیستم‌های کنترل پیشرفته در وسایل فضایی انعطاف‌پذیر

نوع مقاله: علمی- ترویجی

نویسنده

دانشکدة فنی و مهندسی، دانشگاه آزاد اسلامی، واحد تهران شمال

چکیده

در این مقاله، کنترلرهای پیشرفته برای کنترل مانور و ارتعاشات سیستم­های دینامیکی با مختصات صلب - انعطاف­پذیر معرفی و توصیف شده است. در فرایند طراحی کنترلر، تحلیل پایداری سیستم کنترل از جمله مسائل مطرح و مهم است. کنترل فضاپیماهای انعطاف­پذیر یا ربات­های انعطاف­پذیر با دینامیک صلب و انعطاف­پذیر چالش­هایی همراه دارد که طراحان را به توسعه کنترلرهای پیشرفته ترغیب کرده است. هریک از این سیستم­های کنترلی مزایا و معایبی دارد که در این مقاله سعی شده با بررسی انواع روش­های کنترلی و مرور کارهای انجام­شده در این حوزه، مخاطب را با نقاط ضعف و قوت روش­های موجود آشنا نمود.

کلیدواژه‌ها


[1]   http://messenger.jhuapl. edu/ About/Spacecraft-and-Instruments.html.

[2]   Duan, X.G., Li, H.X., and Deng, H., "Robustness of Fuzzy PID Controller Due to Itsinherent Saturation", J. Process Control, No. 22, pp. 470–476, 2012.

[3]   Karasakal, M., Guzelkaya, I., Eksin, Yesil, E., and Kumbasar, T., "Online Tuning Offuzzy PID Controllers via Rule Weighing, Based on Normalized Acceleration", Eng. Appl. Artif. Intell., No. 26 , pp.184–197, 2016.

[4]   Mahmoodabadi, M. and Jahanshahi, H., "Multi-Objective Optimized Fuzzy-Pidcontrollers for Fourth Order Non-linear Systems", Eng. Sci. Tech. Int. J., No.19, pp.1084–1098, 2016.

[5]   Sahib, M.A., "A Novel Optimal PID Plus Second Order Derivative Controller for AVRsystem", Eng. Sci. Tech. Int. J., No. 18, pp. 194–206, 2015.

[6]   Yuce, E., Tokat, S., Minaei, S., and Cicekoglu, O., “Low-Component-Countinsensitive Current-Mode And Voltage-Mode PID, PI And PD Controllers,” Frequenz, Vol. 60, pp. 29-33, 2006.

[7]   Srisakultiew, S. and Siripruchyanun, M., “A Synthesis of Electronically Controllable Current-Mode PI, PD, and PID Controllers Employing CCCDBAs”, Circuits and Systems, Vol. 4, pp. 287-292, 2013.

[8]   Zuperl, U., Cus, F., and Milfelner, M., "Fuzzy Control Strategy for an Adaptive Forcecontrolin End-Milling", J. Mater. Process. Tech., No. 164, pp. 1472–1478, 2005.

[9]   Filipe, N. and Tsiotras, P., "Adaptive Position and Attitude-Tracking Controller Forsatellite Proximity Operations Using Dual Quaternions", J. Guid. Control Dyn., No. 38, pp. 566–577, 2014.

[10]    Zhang, C., Wang, D., Zhang, and Shao, X., "Learning Observer Based Andevent-Triggered Control to Spacecraft Against Actuator Faults", Aerosp. Sci. Tech., Vol. 78, pp. 522-530, 2018.

[11]    Miao, Y., Wang, F., and Liu, M., "Anti-Disturbance Back Stepping Attitude Control for Rigid-Flexible Coupling Spacecraft", IEEE Access, Vol. 6, pp. 50729-50736, 2018.

[12]    Show, L.L., Juang, J.C., and Jan, Y.W., "An LMI-Based Non-linear Attitude Control Approach", IEEE Trans. Control Syst. Technol., Vol. 11, No. 1, pp. 73-83, 2003.

[13]    Jiang, B., Hu, Q. and Friswell, M.I., "Fixed-Time Attitude Control for Rigid Spacecraft with Actuator Saturation and Faults", IEEE Trans. Control Syst. Tech., Vol. 24, No. 5, pp. 1892-1898, 2016.

[14]    Sun, S., Zhao, L., and Jia, Y., "Finite-Time Output Feedback Attitude Stabilisation for Rigid Spacecraft with Input Constraints", IET Control Theory Appl., Vol. 10, No. 14, pp. 1740-1750, 2016.

[15]    Zou, A.M., de Ruiter, A.H.J., and Kumar, K.D., "Finite-Time Attitudetracking Control for Rigid Spacecraft with Control Input Constraints'', IET Control Theory Appl., Vol. 11, No. 7, pp. 931-940, 2017.

[16]    Luo, W., Chu, Y.C., and Ling, K.V., "Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft", IEEE Trans. Autom. Control, Vol. 50, No. 11, pp. 1639-1654, 2005.

[17]    Sahib, M.A., "A Novel Optimal PID Plus Second Order Derivative Controller for Avrsystem", Eng. Sci. Technol. Int. J., 18 , pp. 194–206, 2015.

[18]    Michael, J., Chudej, K., and Pannek, J., "Modelling and Optimal Control of a Docking maneuver with an Uncontrolled Satellite", arXiv preprint arXiv: 1203.6782, 2012.

[19]    Chen, M., Ge, S.S., and Ren, B.B.,"Adaptive Tracking Control of Uncertain MIMO Non-Linear Systems with Input Constraints", Automatica, Vol. 47, No.3,  pp. 452–465, 2011.

[20]    Wang, H.Q., Chen, B., and Lin, C.,"Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Systems", Int. J. Robust Nonlinear Control, Vol. 24, No. 7, pp. 1262–1280, 2014.

[21]    Zhou, J., Wen, C., and Zhang, Y., "Adaptive Output Control of Nonlinear Systems with Uncertain Dead-Zone Nonlinearity", IEEE Trans. Autom. Control, Vol. 21, No. 3, pp. 504–511, 2006.

[22]    Zhou, Q. and et al., "Adaptive Fuzzy Tracking Control for a Class of Pure-Feedback Nonlinear Systems with Time-Varying Delay and Unknown Dead Zone", Fuzzy Sets Syst., Vol. 329 , pp. 36–60, 2016.

[23]    Gao, Z., Zhou, Z., Jiang, G., Qian, M., and Lin, J., “Active Fault Tolerant Control Scheme for Satellite Attitude Systems: Multiple Actuatorfaults Case,” Int. J. Control Autom. Syst., Vol. 16, No. 4, pp. 1794-1804, 2018.

[24]    Xiao, B., Hu, Q., and Friswell, M.I., "Active Fault-Tolerant Attitude Control for -Exible Spacecraft with Loss of Actuator Effectiveness,'' Int. J. Adapt. Control Signal Process., Vol. 27, No. 11, pp. 925_943, 2013.

[25]    Werner, H. and Furuta, K., "Simultaneous Stabilization Based on Output Measurement", Kybernetika, Vol. 31, No. 4, pp. 395-411, 1995.

[26]    Zhou, N., Xia,Y., Wang, M., and Fu, M., "Finite-Time Attitude Control Ofmultiple Rigid Spacecraft Using Terminal Sliding Mode", Int. J. Robust Nonlinear Control, Vol. 25, No. 12, pp. 1862-1876, 2015.

[27]    Zhou, A.M., Kumar, K.D., Hou, Z.-G., and Liu, X., "Finite-Time AttitudeTracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network'', IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 41, No. 4, pp. 950-963, 2011.

[28]    Guo, Y., Song, S.M., Li, X.H., and Li, P., "Terminal Sliding Mode Controlfor Attitude Tracking of Spacecraft under Input Saturation", J. Aerosp. Eng., Vol. 30, No. 3, 2017.

[29]    Shao, S. K., Zong, Q., Tian, B.L., and Wang, F., "Finite-Time Sliding Modeattitude Control For Rigid Spacecraft Without Angular Velocity Measurement", J. Franklin Inst.-Eng. Appl. Math., Vol. 354, No. 12, pp. 4656-4674, 2017.

[30]    Liu, Z., Tan, X., and Yuan, R.,"Immersion and Invariance-Based Output Feedback Control of Air-Breathing Hypersonic Vehicles", IEEE Trans. Autom. Sci. Eng. Vol. 13, No.1, pp. 394–402, 2016.

[31]    Zhou, Q., Li, H.Y., Wang, L.J., and Lu, R.Q., "Prescribed Performance Observer-Based Adaptive Fuzzy Control for Nonstrict-Feedback Stochastic Nonlinear Systems", IEEE Trans. Syst. Man Cybern. Syst., Vol. 99, pp.1–12, 2017.

[32]    Zhou, Q. and Wang, L., Wu, C., and Li, H., "Adaptive Fuzzy Tracking Control for a Class of Pure-Feedback Nonlinear Systems with Time-Varying Delay And Unknown Dead Zone", Fuzzy Sets Syst. Vol. 329, pp. 36–60, 2016.

[33]    Yu, L. and Fu, M., "A Robust Nite-Time Output Feedback Controlscheme for Marine Surface Vehicles Formation,'' IEEE Access, Vol. 6, pp. 41291-41301, 2018.

[34]    Sun, S., Zhao, L., and Jia, Y., “Finite-Time Output Feedback Attitude Stabilization For Rigid Spacecraft With Input Constraints,” IET Control Theory Appl. Vol. 10, No. 14, pp. 1740-1750, 2016.

[35]    Su, J. and Cai, K.-Y., “Globally Stabilizing Proportional-Integral-Derivativecontrol Laws for Rigid-body Attitude Tracking,'' J. Guid., Control Dyn., Vol. 34, No. 4, pp. 1260-1264, 2011.

[36]    Chammas, A.B. and Leondes, C.T., “Pole Assignment by Piecewise Constant Output Feedback.” Int. J. Control, Vol. 29, No. 1, pp. 31–38, 1979.

[37]    Zuperl, U. Cus, F., and Milfelner, M., Fuzzy Control Strategy for an Adaptive Forcecontrol In End-Milling, J. Mater. Process. Technol. Vol. 164, pp. 1472–1478, 2005.

[38]    Guo, Y.,"Velocity-Free Sliding Mode Control for Spacecraft with Input Saturation," Acta Astronautica, pp. 1-8, 2019.

[39]    Zhang, C., Ma, G., Sun, Y., and Li, C., "Prescribed Performance Adaptive Attitude Tracking Control for Flexible Spacecraft with Active Vibration Suppression," Nonlinear Dyn., Vol. 96, No. 3, pp. 1909–1926 2019.

[40]    Cao, Y., Cao, D., and Huang, W., "Nonlinear Dynamic Modeling and Decoupling for Rigid–Flexible Coupled System of Spacecraft with Rapid Maneuver," Mechanical Engineering Science, Vol. 233, No. 14, pp. 4896-4913, 2019.

[41]    Gao, H., He, W., Zhou, C., and Sun, C., "Neural Network Control of a Two-Link Flexible Robotic Manipulator Using Assumed Mode Method," IEEE Transactions On Industrial InformaticS, Vol. 154, pp. 1–8, 2019.

[42]    He, W. and Liu, J., "Vibration Control of a Flexible Beam," Vibration Control and Stability Analysis, 10.1007/978-981-10-7539-1_3, 2018.

[43]    Jiang, T., Liu, J., and He, W., "Boundary Control For A Flexible Manipulator Based on Infinite Dimensional Disturbance Observer," Journal of Sound and Vibration, Vol. 348, pp. 1–14,  2015.

[44]    Jnifene, A. and Andrews, W. "Experimental Study on Active Vibration Control of a Single-Link Flexible Manipulator Using Tools of Fuzzy Logic and Neural Networks," IEEE Transactions on Industrial Informatics, Vol. 54, No. 3, pp. 1200 - 1208 2005.

[45]    Kiang, C.T., Spowage, A., and Yoong, C.K., "Review of Control and Sensor System of Flexible Manipulator," J. Intell Robot Syst., Vol. 201, pp.187–213, 2015.

[46]    Liu, Ch., Shi, K., and Sun, Z.,"Robust H1 controller Design for Attitude Stabilization of Flexible Spacecraft with Input Constraints", Advances in Space Research, Vol. 63, No. 5,  pp. 1498-1522,  2018.

[47]    Kumar Pradhan, S. and Subudhi, B., "Nonlinear Adaptive Model Predictive Controller for a Flexible Manipulator: An Experimental Study," IEEE Transactions on Industrial Informatics, Vol. 2, No. 1, pp. 1754 - 1768, 2014.