نوع مقاله : علمی پژوهشی

نویسندگان

1 استادیار، گروه هوافضا، دانشکده انرژی‌های تجدیدپذیر، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 دانشجوی کارشناسی ارشد، گروه هوافضا، دانشکده انرژی‌های تجدیدپذیر، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

تعیین میزان موفقیت کنترل­‌کننده یکی از مسائل مهم در حوزه کنترل تحمل‌­پذیر عیب فعال فضاپیما می‌­باشد. دلیل اهمیت زیاد این موضوع نیز ماهیت تصادفی و از قبل پیش‌­بینی نشده عیوب است. از طرفی، به دلیل وجود حالت­‌های بسیار زیاد (تقریبا بیشمار) عیب، انجام شبیه‌­سازی‌­های متعدد و بررسی میزان موفقیت کنترل­‌کننده در شرایط مختلف بروز عیب زمان‌بر خواهد بود. برای رفع این مشکل، در این مقاله از شبکه عصبی برای تعیین درصد موفقیت کنترل­‌کننده تحمل­‌پذیر عیب فعال فضاپیما در شرایط مختلف رخداد عیب استفاده شده است. بدین صورت که ابتدا، شبکه عصبی تحت آموزش قرار گرفته و سپس، با بررسی­های مختلف از عملکرد مناسب آن در پیش­بینی موفقیت یا عدم­‌ موفقیت کنترل­‌کننده اطمینان حاصل شده است. سپس، با توجه به سرعت بسیار زیاد شبکه آموزش دیده، بررسی متنوعی از میزان موفقیت کنترلر در طیف گسترده‌­ای از عیوب انجام شده است. نتایج بدست آمده از نظر فیزیکی منطقی بوده و نشان می­‌دهند که با افزایش شدت عیب، احتمال موفقیت کنترل­‌کننده نیز کاهش می­‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Using Neural Network to Estimate the Success Percent of Spacecraft Active Fault-Tolerant Controller

نویسندگان [English]

  • Rouzbeh Moradi 1
  • Jamila Hamzeyee 2

1 Assistant Professor Aerospace group, Renewable Energies Department, Urmia University of Technology, Urmia. Iran

2 M. Sc. Student, Aerospace group, Renewable Energies Department, Urmia University of Technology, Urmia, Iran

چکیده [English]

Determining the controller success percent is one of the important issues in spacecraft active fault-tolerant control. The importance of this subject is mainly related to the random and unpredictable nature of faults. On the other hand, since there exists a wide range of faults, various simulations and evaluating controller success percent will require a large amount of time. To resolve this problem, the present paper uses neural network to determine the controller success percent in various fault conditions. First, the neural network is trained and its performance in predicting controller efficiency is verified. Then, considering the high speed of the trained network, a thorough investigation is performed based on a wide range of faults. The obtained results are physically sensible and show that as the fault increases, the probability of controller success will decrease.

کلیدواژه‌ها [English]

  • Active Fault-Tolerant Control
  • Spacecraft
  • Angular Velocity
  • Neural Network
[1]   Y. Zhang and J. Jiang, "Bibliographical review on reconfigurable fault-tolerant control systems," Annual reviews in control, vol. 32, no. 2, pp. 229-252, 2008.
[2]   J. Jiang and Y. Zhang, "Graceful performance degradation in active fault-tolerant control systems," IFAC Proceedings Volumes, vol. 35, no. 1, pp. 275-280, 2002.
[3]   Y. Zhang and J. Jiang, "Fault tolerant control system design with explicit consideration of performance degradation," IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 3, pp. 838-848, 2003.
[4]   Y. Zhang, J. Jiang, Z. Yang, and A. Hussain, "Managing performance degradation in fault tolerant control systems," IFAC Proceedings Volumes, vol. 38, no. 1, pp. 424-429, 2005.
[5]   J. Jiang and Y. Zhang, "Accepting performance degradation in fault-tolerant control system design," IEEE transactions on control systems technology, vol. 14, no. 2, pp. 284-292, 2006.
[6]   S. Yin, B. Xiao, S. X. Ding, and D. Zhou, "A review on recent development of spacecraft attitude fault tolerant control system," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3311-3320, 2016.
[7]   J. Jiang and X. Yu, "Fault-tolerant control systems: A comparative study between active and passive approaches," Annual Reviews in control, vol. 36, no. 1, pp. 60-72, 2012.
[8]   C. Zhang, M.-Z. Dai, J. Wu, B. Xiao, B. Li, and M. Wang, "Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization," Aerospace Science and Technology, vol. 114, p. 106746, 2021.
[9]   K. Lu, T. Li, and L. Zhang, "Active attitude fault-tolerant tracking control of flexible spacecraft via the Chebyshev neural network," Transactions of the Institute of Measurement and Control, vol. 41, no. 4, pp. 925-933, 2019.
[10] C. Tan, G. Xu, L. Dong, H. Zhao, J. Li, and S. Zhang, "Neural network-based finite-time fault-tolerant control for spacecraft without unwinding," International Journal of Aerospace Engineering, vol. 2021, pp. 1-10, 2021.
[11] P. H. Zipfel, Modeling and simulation of aerospace vehicle dynamics. Aiaa, 2000.
[12] D. Wang, Y. Jia, L. Jin, and S. Xu, "Control analysis of an underactuated spacecraft under disturbance," Acta Astronautica, vol. 83, pp. 44-53, 2013.
[13] M. Tafazoli, "A study of on-orbit spacecraft failures," Acta Astronautica, vol. 64, no. 2-3, pp. 195-205, 2009.
[14] T. Miksch and A. Gambier, "Fault-tolerant control by using lexicographic multi-objective optimization," in 2011 8th Asian Control Conference (ASCC), 2011, pp. 1078-1083: IEEE.
[15] R. MATLAB and S. T. Release, "The MathWorks, Inc., Natick, Massachusetts, United States," ed, 2019.