Document Type : Scientific extension


Assistant Professor, Aerospace research Institute, Ministry of Science, Research and Technology Tehran, Iran


Plants have different mechanisms for understanding and responding to environmental stimuli cues. Gravity is one of the most important directional environmental cues to control growth direction, that plants can permanently adapt to it. Gravitropism can be divided into four steps: 
1) Perception of the gravity vector by specialized cells, 
2) The transduction of the mechanical stimulus into a biochemical signal, 
3)Transmission of biochemical signal from the specialized gravity-perception cells to the responsive zone, 
 4)Differential growth of the responsive zone to orient the direction of growth in regard to the gravity vector. 
Heretofore, several models have been proposed to transduce the physical stimulus of gravity into a biochemical signal. One of the most important of these models is Starch-Statolith Hypothesis. The present paper briefly describes the adaptation of terrestrial plants to gravity as well as various models of plants response to gravity.


[1] J. Z., Kiss, "Mechanisms of the early phases of plant gravitropism." Critical Reviews in Plant Sciences vol. 19, 2000, pp. 551-573.
[2] J. P., Vandenbrink, J. Z., Kiss, R., Herranz, and F. J., Medina, "Light and gravity signals synergize in modulating plant development." Frontiers in plant science 5 (2014): 563.
[3] M., Braun, M., Böhmer, D.P., Häder, R., Hemmersbach, and K., Palme, Gravitational Biology I: Gravity Sensing and Graviorientation in Microorganisms and Plants. Springer, 2018.
[4] D., Volkmann, F., Baluska, "Gravity: one of the driving forces for evolution". Protoplasma, vol. 229, 2006, pp. 143–148.
[5] K., Waldron, C., Brett, "Effects of extreme acceleration on the germination, growth and cell wall composition of peaepicotyls", Journal of Experimental Botany, vol. 41, 1990, PP. 71–77.
[6] T., Hoson, K., Soga, "New aspects of gravity responses in plant cells", International review of cytology, vol.229, 2003, pp. 209–244.
[7] R., Hemmersbach, D., Volkmann, D. P., Häder, "Graviorientation in protists and plants". Journal of Plant Physiology, vol. 154, 1999, pp.1–15.
[8] E., Skagen, T. H., Iversen, "Simulated weight lessness and hypergresultsin opposite effects on their generation of the cortical microtubule array in protoplasts from Brassicanapus hypocotyls". Physiologia plantarum, vol. 106, 1999, pp. 318–325.
[9]Y., ChebliA., Geitmann, "Gravity Research on Plants: Use of Single-Cell Experimental Models". Frontiers in Plant Science, vol. 2011, vol. 2, 2011, pp. 56.
[10] M., Braun, A., Sievers, "Plant cells on earth and in space", Korean journal of biological sciences, vol. 4, 2000, pp. 201–214.
[11] F., Baluska, K.H., Hasenstein, "Root cytoskeleton: its role in perception of and response to gravity", Planta. vol.203, 1997, pp. 69–78.
[12] G., Perbal, D., Driss-Ecole, "Mechano transduction in gravisensing cells". Trends in Plant Sciences. vol. 8, 2003, pp. 498-504.
[13]M.T., Morita, "Directional gravity sensing in gravitropism". Annual Review Of Plant Biology, vol. 61, 2010, pp. 705–720.
[14] E. S., Haswell, "Gravityperception: how plants stand up for themselves", Current Biology, vol.13, 2003, pp. 761–763.
[15]Sack, Fred D., “Plastids and gravitropic sensing.”Planta, vol. 203, 1997, pp. S63-S68.
[16] D., Driss-Ecole, A., Lefranc, and G., Perbal, "A polarized cell: the root statocyte." Physiologia Plantarum , vol.118, 2003, pp.305-312.
[17] E. B., Blancaflor, J. M., Fasano, and S., Gilroy, "Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity." Plant physiology, vol.116, 1998, pp. 213-222.
[18] H., Yasuko, M., Tasaka, and M. T., Morita, "Mechanism of higher plant gravity sensing." American Journal of Botany, vol.100, 2013, pp. 91-100.
[19] F. D., Sack, M. M., Suyemoto, and A. C., Leopold, "Kinetics of amyloplast sedimentation in gravistimulated maize coleoptiles." Planta, vol. 161, 1984, pp. 459-464.
[20] F. D., Sack, M., Mitsu Suyemoto, and A., Carl Leopold, "Amyloplast sedimentation kinetics in gravistimulated maize roots." Planta , vol.165, 1985, pp. 295-300.
[21] Song, Il, Casey R. Lu, Thomas G. Brock, and Peter B. Kaufman, "Do starch statoliths act as the gravisensors in cereal grass pulvini?." Plant Physiology, vol. 86, 1988, pp. 1155-1162.
[22] F. D., Sack, "Plant gravity sensing." In International review of cytology, vol. 127, pp. 193-252. Academic Press, 1991.
 [23] F., Hidehiro, J., Wysocka‐Diller, T., Kato, H., Fujisawa, P. N., Benfey, and M., Tasaka, "Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana." The Plant Journal, vol. 14, 1998, pp. 425-430.
 [24] H. G., Dickinson, C. J., Elleman, and J., Doughty, "Pollen coatings–chimaeric genetics and new functions." Sexual Plant Reproduction, vol.12, 2000, pp. 302-309.
[25] S. M., Read, A. E., Clarke, and A., Bacic, "Stimulation of growth of cultured Nicotiana tabacum W 38 pollen tubes by poly (ethylene glycol) and Cu (II) salts." Protoplasma, vol. 177, 1993, pp. 1-14.
[26] J. H., Crowe, F.A., Hoekstra, and L. M., Crowe, "Membrane phase transitions are responsible for imbibitional damage in dry pollen." Proceedings of the National Academy of Sciences 86, 1989, pp. 520-523.
[27]Y., ChebliA., Geitmann, "Gravity Research on Plants: Use of Single-Cell Experimental Models". Frontiers in Plant Science, vol. 2, 2011, pp. 56, 2011. 
[28]R., Wayne, M.P., Staves, "A down to earth model of gravisensing of Newton’s Law of Gravitation from the apple’s perspective".  Physiologia plantarum. vol. 98, 1996, pp. 917–921.
 [29] R., Wayne, M. P., Staves, A. C. Leopold, "The contribution of the extra cellular matrix to gravisensing in characean cells". Journal of Cell Science, vol. 101, 1992, pp. 611–623.
[30] F. A., Hoekstra, L. M, Crowe, J. H., Crowe, "Differential dessication sensitivity of corn and Pennisetum pollen linked to their sucrose contents". Plant Cell Environment.vol. 12, 1989, pp. 83–91.
[31] D. E., Ingber, "How cells (might) sense microgravity". The FASEB Journal, vol.13, pp. 3–15, 1999.
[32] D.E., Ingber, "Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton". Journal of Cell Science, vol. 104, 1993, pp. 613–627.
[33] A., Orr, B., Helmke, B., Blackman, M., Schwartz, " Mechanisms of mechanotransduction", Developmental cell, vol. 10, 2006, pp. 11–20.
[34] D., Ingber, "Cellular mechanotransduction: putting all the pieces together again". FASEB journal, vol. 20, 2006, pp. 11–27.
[35] C., Yang, D., Wei, F. Y., Zhuang, "The force induced by organelles’weight in the microfilament is intherange of 0.1-1 pN". Acta astronautica, vol. 63, 2008, pp. 923–928.
[36] D. A., Collings, G., Zsuppan, N. S., Allen, and E. B., Blancaflor, "Demonstration of prominent actin filaments in the root columella." Planta, vol. 212, 2001, pp. 392-403.
[37] A., Sievers, S., Kruse, L., Kuo-Huang, and M., Wendt, "Statoliths and microfilaments in plant cells." Planta, vol. 179, 1989, pp. 275-278.