Document Type : Scientific extension


*,Educator, Islamic Azad University, North Tehran Branch، Tehran ،Iran


This paper presents advanced controllers for maneuver and vibration control of dynamic systems with rigid-flexible coordinates. Stability analysis of such a control system is one of the important issues. The control of flexible spacecrafts or flexible manipulators with rigid-flexible body dynamics has challenges that encourage designers to develop advanced controllers. Each of these control systems has some advantages and some disadvantages. The purpose of the present paper is to study various control design methods and to review the literature by addressing the weaknesses and strengths of existing techniques. 


[1]   http://messenger.jhuapl. edu/ About/Spacecraft-and-Instruments.html.
[2]   Duan, X.G., Li, H.X., and Deng, H., "Robustness of Fuzzy PID Controller Due to Itsinherent Saturation", J. Process Control, No. 22, pp. 470–476, 2012.
[3]   Karasakal, M., Guzelkaya, I., Eksin, Yesil, E., and Kumbasar, T., "Online Tuning Offuzzy PID Controllers via Rule Weighing, Based on Normalized Acceleration", Eng. Appl. Artif. Intell., No. 26 , pp.184–197, 2016.
[4]   Mahmoodabadi, M. and Jahanshahi, H., "Multi-Objective Optimized Fuzzy-Pidcontrollers for Fourth Order Non-linear Systems", Eng. Sci. Tech. Int. J., No.19, pp.1084–1098, 2016.
[5]   Sahib, M.A., "A Novel Optimal PID Plus Second Order Derivative Controller for AVRsystem", Eng. Sci. Tech. Int. J., No. 18, pp. 194–206, 2015.
[6]   Yuce, E., Tokat, S., Minaei, S., and Cicekoglu, O., “Low-Component-Countinsensitive Current-Mode And Voltage-Mode PID, PI And PD Controllers,” Frequenz, Vol. 60, pp. 29-33, 2006.
[7]   Srisakultiew, S. and Siripruchyanun, M., “A Synthesis of Electronically Controllable Current-Mode PI, PD, and PID Controllers Employing CCCDBAs”, Circuits and Systems, Vol. 4, pp. 287-292, 2013.
[8]   Zuperl, U., Cus, F., and Milfelner, M., "Fuzzy Control Strategy for an Adaptive Forcecontrolin End-Milling", J. Mater. Process. Tech., No. 164, pp. 1472–1478, 2005.
[9]   Filipe, N. and Tsiotras, P., "Adaptive Position and Attitude-Tracking Controller Forsatellite Proximity Operations Using Dual Quaternions", J. Guid. Control Dyn., No. 38, pp. 566–577, 2014.
[10]    Zhang, C., Wang, D., Zhang, and Shao, X., "Learning Observer Based Andevent-Triggered Control to Spacecraft Against Actuator Faults", Aerosp. Sci. Tech., Vol. 78, pp. 522-530, 2018.
[11]    Miao, Y., Wang, F., and Liu, M., "Anti-Disturbance Back Stepping Attitude Control for Rigid-Flexible Coupling Spacecraft", IEEE Access, Vol. 6, pp. 50729-50736, 2018.
[12]    Show, L.L., Juang, J.C., and Jan, Y.W., "An LMI-Based Non-linear Attitude Control Approach", IEEE Trans. Control Syst. Technol., Vol. 11, No. 1, pp. 73-83, 2003.
[13]    Jiang, B., Hu, Q. and Friswell, M.I., "Fixed-Time Attitude Control for Rigid Spacecraft with Actuator Saturation and Faults", IEEE Trans. Control Syst. Tech., Vol. 24, No. 5, pp. 1892-1898, 2016.
[14]    Sun, S., Zhao, L., and Jia, Y., "Finite-Time Output Feedback Attitude Stabilisation for Rigid Spacecraft with Input Constraints", IET Control Theory Appl., Vol. 10, No. 14, pp. 1740-1750, 2016.
[15]    Zou, A.M., de Ruiter, A.H.J., and Kumar, K.D., "Finite-Time Attitudetracking Control for Rigid Spacecraft with Control Input Constraints'', IET Control Theory Appl., Vol. 11, No. 7, pp. 931-940, 2017.
[16]    Luo, W., Chu, Y.C., and Ling, K.V., "Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft", IEEE Trans. Autom. Control, Vol. 50, No. 11, pp. 1639-1654, 2005.
[17]    Sahib, M.A., "A Novel Optimal PID Plus Second Order Derivative Controller for Avrsystem", Eng. Sci. Technol. Int. J., 18 , pp. 194–206, 2015.
[18]    Michael, J., Chudej, K., and Pannek, J., "Modelling and Optimal Control of a Docking maneuver with an Uncontrolled Satellite", arXiv preprint arXiv: 1203.6782, 2012.
[19]    Chen, M., Ge, S.S., and Ren, B.B.,"Adaptive Tracking Control of Uncertain MIMO Non-Linear Systems with Input Constraints", Automatica, Vol. 47, No.3,  pp. 452–465, 2011.
[20]    Wang, H.Q., Chen, B., and Lin, C.,"Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Systems", Int. J. Robust Nonlinear Control, Vol. 24, No. 7, pp. 1262–1280, 2014.
[21]    Zhou, J., Wen, C., and Zhang, Y., "Adaptive Output Control of Nonlinear Systems with Uncertain Dead-Zone Nonlinearity", IEEE Trans. Autom. Control, Vol. 21, No. 3, pp. 504–511, 2006.
[22]    Zhou, Q. and et al., "Adaptive Fuzzy Tracking Control for a Class of Pure-Feedback Nonlinear Systems with Time-Varying Delay and Unknown Dead Zone", Fuzzy Sets Syst., Vol. 329 , pp. 36–60, 2016.
[23]    Gao, Z., Zhou, Z., Jiang, G., Qian, M., and Lin, J., “Active Fault Tolerant Control Scheme for Satellite Attitude Systems: Multiple Actuatorfaults Case,” Int. J. Control Autom. Syst., Vol. 16, No. 4, pp. 1794-1804, 2018.
[24]    Xiao, B., Hu, Q., and Friswell, M.I., "Active Fault-Tolerant Attitude Control for -Exible Spacecraft with Loss of Actuator Effectiveness,'' Int. J. Adapt. Control Signal Process., Vol. 27, No. 11, pp. 925_943, 2013.
[25]    Werner, H. and Furuta, K., "Simultaneous Stabilization Based on Output Measurement", Kybernetika, Vol. 31, No. 4, pp. 395-411, 1995.
[26]    Zhou, N., Xia,Y., Wang, M., and Fu, M., "Finite-Time Attitude Control Ofmultiple Rigid Spacecraft Using Terminal Sliding Mode", Int. J. Robust Nonlinear Control, Vol. 25, No. 12, pp. 1862-1876, 2015.
[27]    Zhou, A.M., Kumar, K.D., Hou, Z.-G., and Liu, X., "Finite-Time AttitudeTracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network'', IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 41, No. 4, pp. 950-963, 2011.
[28]    Guo, Y., Song, S.M., Li, X.H., and Li, P., "Terminal Sliding Mode Controlfor Attitude Tracking of Spacecraft under Input Saturation", J. Aerosp. Eng., Vol. 30, No. 3, 2017.
[29]    Shao, S. K., Zong, Q., Tian, B.L., and Wang, F., "Finite-Time Sliding Modeattitude Control For Rigid Spacecraft Without Angular Velocity Measurement", J. Franklin Inst.-Eng. Appl. Math., Vol. 354, No. 12, pp. 4656-4674, 2017.
[30]    Liu, Z., Tan, X., and Yuan, R.,"Immersion and Invariance-Based Output Feedback Control of Air-Breathing Hypersonic Vehicles", IEEE Trans. Autom. Sci. Eng. Vol. 13, No.1, pp. 394–402, 2016.
[31]    Zhou, Q., Li, H.Y., Wang, L.J., and Lu, R.Q., "Prescribed Performance Observer-Based Adaptive Fuzzy Control for Nonstrict-Feedback Stochastic Nonlinear Systems", IEEE Trans. Syst. Man Cybern. Syst., Vol. 99, pp.1–12, 2017.
[32]    Zhou, Q. and Wang, L., Wu, C., and Li, H., "Adaptive Fuzzy Tracking Control for a Class of Pure-Feedback Nonlinear Systems with Time-Varying Delay And Unknown Dead Zone", Fuzzy Sets Syst. Vol. 329, pp. 36–60, 2016.
[33]    Yu, L. and Fu, M., "A Robust Nite-Time Output Feedback Controlscheme for Marine Surface Vehicles Formation,'' IEEE Access, Vol. 6, pp. 41291-41301, 2018.
[34]    Sun, S., Zhao, L., and Jia, Y., “Finite-Time Output Feedback Attitude Stabilization For Rigid Spacecraft With Input Constraints,” IET Control Theory Appl. Vol. 10, No. 14, pp. 1740-1750, 2016.
[35]    Su, J. and Cai, K.-Y., “Globally Stabilizing Proportional-Integral-Derivativecontrol Laws for Rigid-body Attitude Tracking,'' J. Guid., Control Dyn., Vol. 34, No. 4, pp. 1260-1264, 2011.
[36]    Chammas, A.B. and Leondes, C.T., “Pole Assignment by Piecewise Constant Output Feedback.” Int. J. Control, Vol. 29, No1, pp. 31–38, 1979.
[37]    Zuperl, U. Cus, F., and Milfelner, M., Fuzzy Control Strategy for an Adaptive Forcecontrol In End-Milling, J. Mater. Process. Technol. Vol. 164, pp. 1472–1478, 2005.
[38]    Guo, Y.,"Velocity-Free Sliding Mode Control for Spacecraft with Input Saturation," Acta Astronautica, pp. 1-8, 2019.
[39]    Zhang, C., Ma, G., Sun, Y., and Li, C., "Prescribed Performance Adaptive Attitude Tracking Control for Flexible Spacecraft with Active Vibration Suppression," Nonlinear Dyn., Vol. 96, No. 3, pp. 1909–1926 2019.
[40]    Cao, Y., Cao, D., and Huang, W., "Nonlinear Dynamic Modeling and Decoupling for Rigid–Flexible Coupled System of Spacecraft with Rapid Maneuver," Mechanical Engineering Science, Vol. 233, No. 14, pp. 4896-4913, 2019.
[41]    Gao, H., He, W., Zhou, C., and Sun, C., "Neural Network Control of a Two-Link Flexible Robotic Manipulator Using Assumed Mode Method," IEEE Transactions On Industrial InformaticS, Vol. 154, pp. 1–8, 2019.
[42]    He, W. and Liu, J., "Vibration Control of a Flexible Beam," Vibration Control and Stability Analysis, 10.1007/978-981-10-7539-1_3, 2018.
[43]    Jiang, T., Liu, J., and He, W., "Boundary Control For A Flexible Manipulator Based on Infinite Dimensional Disturbance Observer," Journal of Sound and Vibration, Vol. 348, pp. 1–14,  2015.
[44]    Jnifene, A. and Andrews, W. "Experimental Study on Active Vibration Control of a Single-Link Flexible Manipulator Using Tools of Fuzzy Logic and Neural Networks," IEEE Transactions on Industrial Informatics, Vol. 54, No. 3, pp. 1200 - 1208 2005.
[45]    Kiang, C.T., Spowage, A., and Yoong, C.K., "Review of Control and Sensor System of Flexible Manipulator," J. Intell Robot Syst., Vol. 201, pp.187–213, 2015.
[46]    Liu, Ch., Shi, K., and Sun, Z.,"Robust H1 controller Design for Attitude Stabilization of Flexible Spacecraft with Input Constraints", Advances in Space Research, Vol. 63, No. 5,  pp. 1498-1522,  2018.
[47]    Kumar Pradhan, S. and Subudhi, B., "Nonlinear Adaptive Model Predictive Controller for a Flexible Manipulator: An Experimental Study," IEEE Transactions on Industrial Informatics, Vol. 2, No. 1, pp. 1754 - 1768, 2014.