Document Type : Scientific extension

Author

Assistant Professor, Aerospace Research Institute, Ministry of Science, Research and Technology،Tehran ،Iran

Abstract

Growing the number of satellites ready to be launched emphasizes the need for reduction of space hardware and subsystems cost, volume, and mass. Realizing these reductions can be implemented deploying new mechanisms for space structures. The performance benefit margin of deploying structures increases, as the size of the structure increases. Thus, it makes the technology more attractive for large-scale space systems. Examples of satellite components benefiingt from the utilization of inflatable structures including solar arrays, gravity gradient booms, communication antennas and solar sails. This paper discusses different types of deploying mechanism with their advantageous and disadvantageous focusing on solar arrays and required driven equipments after being placed in an operational orbit.

Keywords

[1]   Conley, P.L., Space Vehicle Mechanisms: Elements of Successful Design, John Wiley & Sons, New York, USA, 1998.
[2]   Jones, P.A. and Spence, B.R., "Spacecraft Solar Array Technology Trends", IEEE Aerospace and Electronic Systems Magazine, Vol. 26, pp. 17-28, 2011.
[3]   Fowler, R., Howell, L., and Magleby, S., "Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms", Mech. Sci, Vol. 2, pp. 205-215, 2011.
[4]   Wertz, J.R., Spacecraft Attitude Determination and Control, Springer Science&Business Media, Vol. 73, 2012.
[5]   Sarafin, T.P. and Larson, W.J., Spacecraft Structures and Mechanisms-From Concept To Launch, Springer, Netherlands, 1995.
[6]   Kanji, S., Mechanical Aspects of Design, Analysis, and Testing for the NORSAT-1 Microsatellite, (M.Sc. Thesis), University of Toronto, 2015.
[7]   Stevens, C. L., Design, Analysis, Fabrication, and Testing of a Nanosatellite Structure, (M.Sc. Thesis), Virginia Polytechnic Institute and State University, 2002.
[8]   Morozov, E. and Lopatin, A., "Design and Analysis of the Composite Lattice Frame of a Spacecraft Solar Array", Composite Structures, Vol. 93, pp. 1640-1648, 2011.
[9]   Zhang, L.X., Bai, Z.F., Zhao, Y., and Cao, X.B., "Dynamic Response of Solar Panel Deployment on Spacecraft System Considering Joint Clearance", Acta Astronautica, Vol. 81, pp. 174-185, 2012.
[10] Pellegrino, S., Kukathasan, S., Tibert, G., and Watt, A., Small Satellite Deployment Mechanisms, Department of Engineering, University of Cambridge, 2000.
[11] Cadogan D.P. and Grahne, M.S., "Deployment Control Mechanisms for Inflatable Space Structures", The 33rd Aerospace Mechanisms Conference, Pasadena: NASA, pp. 1-12, 1999.
[12] Katsumata, M., Natori, M.C., and Yamakawa, H. "Analysis of Dynamic Behaviour of Inflatable Booms in Zigzag and Modified Zigzag Folding Patterns", Acta Astron.Vol. 93, pp. 45-54, 2014.
[13] Szyszkowski, W. and, Glockner, P.,"Inflatable Booms And Pneumatic Hinges: An Application In Deployment of Satellite Sensors", Engineering Structures, Vol. 13, pp. 357-365, 1991.
[14] Freeland, R., Bilyeu, G., Veal, G., and Mikulas, M.,"Inflatable Deployable Space Structures Technology Summary", IAF-98-I.5.01 presented at 49th Congress of the International Astronautical Federation, Melbourne, Australia, Sept. 28-Oct. 2,  1998.
[15] Cassapakis C. and Thomas, M., "Inflatable Structures Technology Development Overview", in Space Programs and Technologies Conference, pp. 3738, Huntsville, AL, USA 1995.
[16] Herzl, G.G., Tubular Spacecraft Booms: Extendible, Reel Stored: Lockheed Missiles & Space Company, 1970.
[17] Meyers, S. and Sturm, J., "Development of a Strain Energy Deployable Boom for the Space Technology, 5 Mission", Proceedings of the 37th Aerospace Mechanisms Symposium, Johnson Space Center, May 19-21, 2004.
[18] Thomson, M., "AstroMesh™ Deployable Reflectors For Ku And Ka Band Commercial Satellites", The 20th AIAA International Communication Satellite Systems Conference and Exhibit., pp. 2032, 2002.
[19] Hoyt, R.P., "Spiderfab: An Architecture for Self-Fabricating Space Systems", in AIAA Space 2013 Conference and Exposition, pp. 5509, 2013.
[20] Christian, J., Jayaram, S., and Swartwout, M., "Feasibility of A Deployable Boom Aboard Picosatellites for Instrumentation and Control Purposes", in 2012 IEEE Aerospace Conference, , pp. 1-9, 2012.
[21] Straubel, M., Block, J., Sinapius, M., and Hühne, C., "Deployable Composite Booms for Various Gossamer Space Structures", in 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13th, pp. 2023, 2011.
[22] Miyazaki, H.I.Y., Kodama, T., Uchiki, M., and Hinuma, S.,"AIAA/USU annual Conference on Small Satellite," 15th utah university, Logan, 2001.
[23] Lake, M.S., Peterson, L.D., Mikulas, M.M., Hinkle, J.D., Hardaway, L.R., and Heald, J., "Structural Concepts and Mechanics Issues for Ultra-Large Optical Systems," The 1999 Ultra Lightweight Space Optics Workshop, 1999.
[24] Tibert, G., "Deployable Tensegrity Structures for Space Applications", (Ph.D. Thesis) Kungliga Tekniska H¨ogskolan, Stockholm, Sweden, 2002.
[25] Mikulas, M.M., "State-Of-The-Art and Technology Needs for Large Space Structures," ASME Monograph on Flight-Vehicle Materials, Structures, and Dynamics Technologies, 1993.
[26] Chandra, A., "Inflatable Parabolic Reflectors for Small Satellite Communication", (M.Sc. Thesis), Arizona State University, USA, 2015.
[27] Guan, F.L., Shou, J.J.,  Hou, G.Y., and Zhang, J.J., "Static Analysis of Synchronism Deployable Antenna", Journal of Zhejiang University-SCIENCE A, Vol. 7, pp. 1365-1371, 2006.
[28] Onoda, J., "Two-dimensional Deployable Truss Structures for Space Applications", Journal of Spacecraft and Rockets, Vol. 25, pp. 109-116, 1988.
[29] You, Z., "Deployable structure of Curved Profile for Space Antennas", Journal of Aerospace Engineering, Vol. 13, pp. 139-143, 2000.
[30] Barrett, R., Taylor, R., Keller, P., Codell, D., and Adams, L., "Deployable Reflectors for Small Satellites", 21th Annual Conf. Smart Satellites, Logan. UT, 2007.
[31] Kiper, G., Söylemez, E., and Kişisel, A. Ö., "A Family of Deployable Polygons and Polyhedra", Mechanism and Machine Theory, Vol. 43, pp. 627-640, 2008.
[32] You, Z., "Motion Structures Extend Their Reach", Materials Today, Vol. 10, pp. 52-57, 2007.
[33] Hedgepeth, J.M., "Structures for Remotely Deployable Precision Antennas", NASA Contractor Report 182065, 1989.
[34] Freeland, R., Bilyeu, G. and Veal, G. , "Validation of A Unique Concept for A Low-Cost, Lightweight Space-Deployable Antenna Structure", Acta Astronautica, Vol. 35, pp. 565-572, 1995.
[35] Boesiger, E.A., "44th Aerospace Mechanisms Symposium", NASA Technical Reports Server (NTRS), 2018.
[36] Vyvyan, W.W., "Self-Actuating, Self-Locking Hinge," ed: Google Patents, 1968.
[37] Greenbelt, S.C.M.,"AIAA/USU Annual Conference On Small satellite", 10th Utah state University, Logan., 1996.
[38] Nagaraj, B., Nataraju, B., and Ghosal, A., "Dynamics of A Two-Link Flexible System Undergoing Locking: Mathematical Modelling and Comparison with Experiments", Journal of sound and vibration, Vol. 207, pp. 567-589, 1997.
[39] Bieler, T., "Handbuch Der Raumfahrttechnik", Aufl., Munich: Hanser, S. 238, 2008.
[40] Pellegrino, S., "Large Retractable Appendages in Spacecraft", Journal of Spacecraft and Rockets, Vol. 32, pp. 1006-1014, 1995.
[41] Wiegand, M., and Konigsmann, H., "A Small Re-Entry Capsule-BREM-SAT 2," 10th AIAA/USU Small Satellite Conference, Logan., Volume 1, 1996.
[42] Miyashita, N. and et al., "Development Of Nano-Satellite Cute-1.7+ APD And Its Current Status," in 56th International Astronautical Congress, Fukuoka, pp. 17-21, 2005.
[43] Nagaraj, B., Pandiyan, R., and Ghosal, A., "Kinematics of Pantograph Masts," Mechanism and Machine Theory, Vol. 44, pp. 822-834, 2009.
[44] Stoeckle, W.D.I.S., "Satellite Solar Generator Panel Deployment Device," Patent:  DE19610297 (C1), 1997.
[45] M. L. u. a., "AIAA/USU annual conference on small satellite", 10th Utah state University, Logan., 1996.
 [46]        Zimmerman, W. H.,"Servomechanisms Responsive to A Heat Source," Patent: US3311322A, 1967-03-28
[47] http://spaceflight101.com/insight/insight-spacecraft/.
[48] Yu, W., Ang, L., Guan, X., and Zhang, Z., "Application of MSC Adams/View Technology in Spacecraft Solar Array Dynamic Analysis," Computer Aided Engineering, p. S1, 2006.
[49] https: //space.skyrocket.de/ doc_sdat/gals-1.htm.
[50] Plaza, J.M.E., Vilán Vilán, J.A., Agelet, F.A., Mancheño, J.B., Estévez, M.L., Fernández, C.M.,  and Ares, F.S., "Xatcobeo: Small Mechanisms for CubeSat Satellites-Antenna and Solar Array Deployment", Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Center, May 12-14, 2010.
[51] Fong, C.J., Yen, N.L., and Chi, S., "Space-Based Global Weather Monitoring System: FORMOSAT-3/COSMIC Constellation and Its Follow-On Mission," Journal of Spacecraft and Rockets, Vol. 46, pp. 883-891, 2009.
[52] Sugawara, Y. and et al., "A satellite for Demonstration of Panel Extension Satellite (PETSAT)," Acta Astronautica, Vol. 63, pp. 228-237, 2008.