Document Type : Research Article


Assistant Professor, Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran


In this article, the deformable structures of a symmetrical airfoil and the discussion of aerodynamic forces are discussed inside the wind tunnel with miniature dimensions. The problem, which is checked in this article, is the investigation the effect of surface deformation in a small airfoil. In order to validate the tunnel, a flat plate is examined in the miniature wind tunnel test section and the experimental results are reported with the existing results with an error of less than 10%. The selected sample of airfoils is one of simple small airfoils and another example is smart . The selected structure material for both small airfoil samples is balsa wood and thermal coating is used for the shell. The test section is analyzed and investigated with simple small airfoil. The next step include the design, fabrication, and finally, the evaluation of the smart small airfoil in the test section.


Main Subjects

[1] E. J. Abdullah, C. Bil, and S. Watkins, “Application of smart materials for adaptive airfoil control,” 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., no. January, pp. 1–11, 2009

[2] Mamou M., Mebarki Y., Khalid M. and Genest M., Aerodynamic performance optimization of a wind tunnel morphing wing model subject to various cruise flow conditions, 27th International congress of the aeronautical sciences,

[3]           S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A review of morphing aircraft,” J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, 2011, doi: 10.1177/1045389X11414084.

[4] R. Zakeri, “Towards bio-inspired artificial muscle: A mechanism based on electro-osmotic flow simulated using dissipative particle dynamics,” Scientific Reports, vol. 11 (1), pp. 1-19,               2021.

[5] R. Zakeri, R. Zakeri, “Bio inspired general artificial muscle using hybrid of mixed electrolysis and fluids chemical reaction (HEFR),” Scientific Reports, vol. 12 (1), pp. 3627, 2022.

[6] R. Zakeri, R. Zakeri, “Deformable airfoil using hybrid of mixed integration electrolysis and fluids chemical reaction (HEFR) artificial muscle technique,” Scientific Reports, 11 (1), 5497, 2021.

[7] R. Zakeri, “Dissipative particle dynamics simulation of the soft micro actuator using polymer chain displacement in electro-osmotic flow” Molecular Simulation, vol. 45 (18), pp.1488-1497, 2019.

[8] R. Zakeri, M. Sabouri, A. Maleki, Z. Abdelmalek, “Investigation of magneto hydro-dynamics effects on a polymer chain transfer in micro-channel using dissipative particle dynamics method,” Symmetry, vol.12 (3), pp.397, 2020.

[9] R. Zakeri, E.S. Lee, “Simulation of nano polymer chain sensor in electroosmotic flow using dissipative particle dynamics (DPD) method,” ASME International Mechanical Engineering Congress and Exposition, 46545, 2014.

[10]         M. Chen, J. Liu, and R. E. Skelton, “Design and control of tensegrity morphing airfoils,” Mech. Res. Commun., vol. 103, p. 103480, 2020, doi: 10.1016/j.mechrescom.2020.103480.

[11]         Z. Kan, D. Li, T. Shen, J. Xiang, and L. Zhang, “Aerodynamic characteristics of morphing wing with flexible leading-edge,” Chinese J. Aeronaut., vol. 33, no. 10, pp. 2610–2619, 2020, doi: 10.1016/j.cja.2020.03.012.

[12] M. Bashir, P. Rajendran, C. Sharma, D. Smrutiranjan, “Investigation of Smart Material Actuators & Aerodynamic optimization of Morphing Wing,” Materials Today: Proceedings,  vol. 5 (1), pp. 21069-21075, 2018.

[13] X. GU, K. Yang, Manqiao, Y. Zhang , J. ZHU, W. Zhang, “Integrated optimization design of smart morphing wing for accurate shape control,” Chinese Journal of Aeronautics, vol. 34(1), pp. 135-147, 2021.

[14]  میترا یادگاری  1  محمدحسین عبدالهی جهدی، تسخیر موج ضربه ای توسط کنترل پخش عددی روی ایرفویل متقارن، مکانیک سازه ها و شاره ها، دوره 6، ص 284-304، 1395.

 [15] C. Leonard, E.E. Prasetiyo, I.R. Putra, “Design and implementation of electrical system morphing wing flight control on prototype light aircraft,”IJPEDS, vol 14 (2), pp. 781-788, 2023.

[16] M. Kazemi,  A. Fardi, M. J. Maghrebi, Amirkabir journal of mechnical engineering, vol. 53 (7), pp. 4113-4132, 2021.

[17]         A. Zhao, Z. Hui, H. Jin, and D. Wen, “Analysis on the Aerodynamic Characteristics of a Continuous Whole Variable Camber Airfoil,” J. Phys. Conf. Ser., vol. 1215, no. 1, 2019, doi: 10.1088/1742-6596/1215/1/012005.

[18]         L. F. Campanile and D. Sachau, “Belt-rib concept: a structronic approach to variable camber,” J. Intell. Mater. Syst. Struct., vol. 11, no. 3, pp. 215–224, 2000, doi: 10.1106/6H4B-HBW3-VDJ8-NB8A.

[19]         K. Taguchi et al., “Experimental study about the deformation and aerodynamic characteristics of the passive morphing airfoil,” Trans. Jpn. Soc. Aeronaut. Space Sci., vol. 63, no. 1, pp. 18–23, 2020, doi: 10.2322/tjsass.63.30.

[20]         I. Dayyani, H. H. Khodaparast, and B. K. S. Woods, “The design of a coated composite corrugated skin for the camber morphing airfoil,” no. November, 2014, doi: 10.1177/1045389X14544151.

[21] B. K. S. Woods, L. Parsons, A. B. Coles, J. H. S. Fincham, and M. I. Friswell, “Morphing elastically lofted transition for active camber control surfaces,” Aerosp. Sci. Technol., vol. 55, pp. 439–448, 2016, doi: 10.1016/j.ast.2016.06.017.

[22] A. E. Rivero, P. M. Weaver, and J. E. Cooper, “Parametric structural modelling of fish bone active camber morphing aerofoils,” no. March, 2018, doi: 10.1177/1045389X18758182.

 [23]        G. K. Ananda, P. P. Sukumar, and M. S. Selig, “Measured aerodynamic characteristics of wings at low Reynolds numbers,” Aerosp. Sci. Technol., vol. 42, pp. 392–406, 2015, doi: 10.1016/j.ast.2014.11.016.

[24] M. Aranda, A. L. García-González, L. Parras, J. F. Velázquez-Navarro, C. del Pino,  “Comparison of the Aerodynamic Characteristics of the NACA0012 Airfoil at Low-to-Moderate Reynolds Numbers for any Aspect Ratio,”, International Journal of Aerospace Sciences, vol. 4(1), pp. 1-8, 2016.