Document Type : Research Article

Authors

1 Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.

2 Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran.

3 PhD student, Composite Materials Engineering, Malek Ashtar University of Technology, Tehran.

Abstract

Due to their cellular structure, metal foams have properties such as low density, strength to weight and high energy absorption under compressive stresses. Among the various metals used for foaming, aluminum and its alloys are the most widely used due to their relatively low density, availability, and ease of foam formation. In this research, A356 aluminum and composite foams with different amounts of silicon carbide (SiC) particles as a reinforcing and stabilizing agent and calcium carbonate powder (CaCO3) as a foaming agent were produced using direct foaming method from the melt. The density of the foam sample was measured between 0.493 and 0.863 g/cubic centimeter. Then, the microstructure of the foams was examined by OM and SEM microscopes and the compressive and flexural properties of the foams in both conventional and sandwich panels. The relationship between flat stress and density with the weight percentage of CaCO3 and SiC particles was investigated, which shows that the compressive behavior of foam products is not uniform. On the other hand, it was shown that at 10% by weight of the SiC boosting agent, plateau stress increases with decreasing CaCO3 powder content from 6.89 to 11.62 MPa.

Keywords

Main Subjects