نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشیار، دانشگاه صنعتی شریف ، دانشکده هوافضا ، تهران ، ایران

2 دانشجوی دکتری، دانشگاه صنعتی شریف ، دانشکده هوافضا ، تهران ، ایران.

3 دانشجوی کارشناسی ارشد، ، دانشگاه صنعتی شریف ، دانشکده هوافضا تهران ، ایران.

چکیده

در این مقاله، مطالعة میدان جریان یک محفظة احتراق توربین گاز مدل در حالت سرد برای کارکرد معمول و چسبیدگی شعله به سرمشعل به روش تجربی و نیز با کمک شبیه‌سازی گردابه‌های بزرگ انجام شده است. ابعاد هندسی پلنیوم و نتایج اندازه‌گیری تجربی صدای محفظه بیانگر تولید صدایی با فرکانس نزدیک به رزونانس پلنیوم دارد. برای بررسی اثر میدان جریان، از نتایج عددی برای کارکرد معمول مشعل و حالت شعله چسبیده استفاده شده است. نتایج عددی نشان می‌دهد که تغییر نسبت هوا میان چرخانندة بیرونی و داخلی به متمایل شدن لایة برشی خروجی به سمت سرمشعل و ایجاد جت کواندا روی دیواره منجر می‌شود. میدان جریان حاصل از شبیه‌سازی عددی نشان می‌دهد که در حالت چسبیدگی شعله به سرمشعل، ناحیة جریان بازگشتی داخلی سرعت‌های منفی کوچک‌تر به خود می‌گیرد و ناپایداری لایة برشی در خروجی نازل بیرونی و گردابه­های آن در اثر چسبیدگی جریان به دیواره از بین می­روند. حذف ناپایداری لایة برشی در خروجی یکی از نازل‌ها می­تواند عامل حذف یکی از دو فرکانس پایه نوسانات و مضارب صحیح آن در اندازه­گیری­های تجربی باشد. ‌‌

کلیدواژه‌ها

موضوعات

  1. [1]  Weigand, P., Meier, W., Duan, X.R., Stricker, w., and Aigner, M.,"Investigations of Swirl Flames in a Gas Turbine Model Combustor: I. Flow Field, Structures, Temperature, and Species Distributions",  Combustion and flame, Vol. 144, No.1-2, pp. 205-224, 2006.

    [2]  Mardani, A., Rezapour-Rastaaghi, H., and Fazlollahi Ghomshi, A., "Liquid Petroleum Gas Flame in a

    Double-Swirl Gas Turbine Model Combustor: Lean Blow-Out, Pollutant, Preheating", Thermal Science,

    Vol. 25, pp. 377-393, No. 1, 2020.

    [3]  Mardani, A., Asadi, B., and Rezapour-Rastag, H., "Experimental Investigation on the Effects of Swirlers Configurations and Air Inlet Partitioning in a Partially-Premixed Double High Swirl Gas Turbine

    Model Combustor", Journal of Energy Resources Technology: Transactions of the ASME, Vol. 143,

    No. 1, P. 012302, 2021.

    [4]  De Santis, A., Ingham, D.B., Ma, L., and Pourkashanian, M., "CFD Cfd Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture", Fuel, Vol. 173, pp.146-154, 2016.

    [5]  Mardani, A., Asadi, B., and Rezapour-Rastaghi, H., "Three Dimensional Numerical Investigation of

    Methane Partially Premixed Combustion in a Double Swirl Gas Turbine Combustor", The 11th

    Mediterranean Combustion Symposium (MCS), Tenerife, Spain, 2019.

    [6]  Syred, N., "A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) In

    Swirl Combustion Systems", Progress in Energy and Combustion Science, Vol. 32, No. 2, pp. 93-161,

    2006.

    [7]  Mardani, A. and Rezapour-Rastaghi, H., "Investigation of the Effects of Inlet Air Flow on the

    Main Structures of the Flow Field in the Combustion Chamber of a Model Gas Turbine with Two-Way Air

    Inlet", The 17th Fluid Dynamics Conference, Shahrud, Iran, 2017 (In Persian).

    [8]  Mardani, A. and Fazlollahi-Ghomshi, A., "Numerical Study of Combustion Flow in a Gas Turbine

    Combustion Chamber Model Using Different Combustion Models", The 6th Fuel & Combustion

    Conference, Mashhad, Iran, 2015 (In Persian).

    [9]  Mardani, A. and Fazlollahi-Ghomshi, A., "Numerical Investigation of a Double-Swirled Gas Turbine Model Combustor Using a RANS Approach with Different Turbulence–Chemistry Interaction Models", Energy & Fuels, Vol. 30, No. 8, pp. 6764-6776, 2016.

    [10]  Mardani, A., Rezapour-Rastaaghi, H., and FazlollahiGhomshi, A.,"Investigation of Lpg Flame Structure in Double Swirl Gas Turbine Model Combustor", MCS 10, Naples, Italy, 2017.

    [11]  Mardani, A. and Fazlollahi-Ghomshi, A., "Numerical Study of Non-Combustion Flow Inside Gas Turbine Combustion Chamber Using Different Turbulence Models", The 14th International conference of Iranian Aerospace Society, Tehran, Iran, 2015 (In Persian).

    [12]  Sadanandan, R., Stöhr, M., and Meier, W., "Simultaneous OH-PLIF and PIV Measurements in a

    Gas Turbine Model Combustor", Applied Physics B: Lasers and Optics, Vol. 90, pp. 609-618, 2008.

    [13]  Steinberg, A.M., Boxx, I., Stöhr, M., Carter, C.D., and Meier, W., "Flow–flame Interactions Causing

    Acoustically Coupled Heat Release Fluctuations in a Thermoacoustically Unstable Gas Turbine Model

    Combustor", Combustion and Flame, Vol. 157, pp. 2250-2266, 2010.

    [14]  Stöhr, M., Boxx, I., Carter, C.D., and Meier, W.,"Experimental Study of Vortexflame Interaction in a

    Gas Turbine Model Combustor", Combustion and flame, Vol. 144, pp. 205-224, 2006.

    [15]  Allison, P.M., "Experimental Characterization of Combustion Instabilities and Flow-Flame Dynamics

    in a Partially-Premixed Gas Turbine Model Combustor", Ph.D. Dissertations, University of Michigan, Ann Arbor, Michigan, USA, 2013.

    [16]  See, Y.C. and Ihme, M., "Large Eddy Simulation of a Gas Turbine Model Combustor", The 51st AIAA

    Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, USA, 2013.

    [17]  See, Y.C. and Ihme, M., "LES Investigation of Flow Field Sensitivity in a Gas Turbine Model  Combustor", 52nd Aerospace Sciences Meeting, National Harbor, Maryland, USA, 2014.

    [18]  See, Y.C. and Ihme, M., "Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor”, Proceedings of the Combustion Institute, Vol. 35, pp.1225-1234, 2015.

    [19]  Rezapour Rastaghi, H. "Experimental and Numerical Study of Gas Turbine Model Combustor", M.Sc.

    Thesis, Sharif University of Technology, Tehran, Iran, 2017.

    [20]  Mardani, A. and Rezapour-Rastaghi, H., "Investigation of the Effects of Inlet Air Flow on the

    Main Structures of the Flow Field in the Combustion Chamber of a Model Gas Turbine with Torsional Air

    Inlet", The 17th Fluid Dynamics Conference, Shahrud, Iran, 2017 (In Persian).

    [21]  Chen, Y. and Driscoll, J.F., "Experimental Studies and Modeling of Acoustic Instabilities in a Gas

    Turbine Model Combustor", The 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, USA, 2015.

    [22]  Benim, A.C., Iqbal, S., Nahavandi, A., Meier, W., Wiedermann, A., and Joos, F., "Analysis of  Turbulent Swirling Flow in an Isothermal Gas Turbine Combustor Model", ASME Turbo Expo 2014:

    Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital

    Collection, Düsseldorf, Germany, 2014.

    [23]  Mardani, A., Agha Beige, A. and Bahonar, H. "Numerical Modelling of Resonance in Plenum

    Chamber of a Gas Turbine Model Combustor", The 11th Mediterranean Combustion Symposium (MCS),

    Tenerife, Spain, 2019.

    [24]  Heng, J., Thanapal, T.D., Chan, W.L., and Elhadidi, B., "Lattice Boltzmann Simulation on the Flow

    Behaviour Associated with Helmholtz Cavity-Backed Acoustic Liners", Journal of Visualization, Vol. 23,

    1. 625-633, 2020.

    [25]  Etaix, N., Crawford, K., Voisey, R., and Hopper, H., "Redesigning Helmholtz Resonators to Achieve

    Attenuation at Multiple Frequencies", International Congress on Acoustics, Buenos Aires, Argantin,

    2016.