نوع مقاله : علمی- ترویجی

نویسندگان

1 دانشجوی دکتری، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی هوافضا، تهران، ایران.

2 استادیار، دانشگاه صنعتی امیرکبیر، پژوهشگاه علوم و فناوری فضا، تهران، ایران.

3 دانشجوی کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی هوافضا، تهران، ایران.

چکیده

هدف اصلی از انجام این پژوهش، ارائة یک روند طراحی به منظور طراحی بادبان کاهش مدار برای ماهواره­‌های مستقر در مدارهای ارتفاع پایین (لئو) با در نظر گرفتن الزامات مأموریت است. در این راستا، ابتدا الزامات و ملاحظات طراحی بادبان کاهش مدار مورد مطالعه قرار گرفته است. در ادامه، مدل‌­های اتمسفری متفاوت و روابط لازم برای طراحی اولیة بادبان کاهش مدار ارائه شده است. سپس، به کمک ابزار Life-time در نرم افزار STK زمان کاهش مدار چندین ماهواره با نسبت‌های جرم به سطح متفاوت، با استفاده از سه مدل تراکم اتمسفری استاتیکی و دینامیکی‌ Harris-priester، Jacchia-Roberts و  MSISE2000از ارتفاع اولیه 700 و 800 کیلومتری محاسبه شد. از این اطلاعات در بخش طراحی ابعاد بادبان مناسب جهت خارج کردن ماهواره­‌ای با ابعاد و جرم مشخص (مطابق سناریو از پیش تعریف شده) از مدار لئو استفاده می­‌شود. در انتها با استفاده از روابط و نمودارهای ارائه شده، برای مدارزدایی یک ماهوره‌ 20 کیلوگرمی از ارتفاع اولیه 800 کیلومتری بادبانی با نسبت جرم به سطح 01/0 کیلوگرم بر متر طی یک روند منظم طراحی شده است. هندسة این بادبان به منظور بهینه بودن به شکل مربع و مبتنی بر  4 تیرک نگهدارنده انتخاب شده است. این هندسه با مصالحه بین دو المان 1-قابلیت اطمینان و 2- انعطاف­‌پذیری انتخاب شده است. نتایج شبیه­‌سازی نشان می‌­دهد که بادبان طراحی شده قادر است الزامات مأموریت سیستم مدارزدایی را برآورده ساخته و ماهواره را طی مدت 6/3 سال از مدار خارج کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Drag Sail Conceptual Design for Satellite Orbit Reduction in Low Earth Orbit

نویسندگان [English]

  • Ali Kasiri 1
  • Farhad Fani saberi 2
  • Rojin Shokri khanghah 3

1 Ph.D. Student. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

2 Assistant Professor. Space Science and Technology Institute, Amirkabir University of Technology, Tehran, Iran.

3 M.Sc. Student. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran.

چکیده [English]

The main purpose of this paper is to provide a regular design process of drag sail for deorbiting a satellite in LEO orbit concerning the mission requirements. In this regard, the design requirements and manufacturing considerations of the drag sail have been studied at first. The paper continued with different atmospheric models and the necessary equations for the initial design of the drag sail. Then, with the help of the Life-Time (LT) tool in STK software, the deorbiting time of several satellites with different mass to surface ratios from two initial altitudes of 700 and 800 km was obtained. In this calculation, three models of static and dynamic atmospheric density: Harris-Priester, Jacchia-Roberts, and MSISE2000, have been used. Usually, these data and pieces of information are using to design the suitable sail specifications (size, shape and, mass) to remove satellites from the Leo orbit. Finally, using the presented equations and provided diagrams, a drag sail is designed to deorbit a 20 kg satellite from an initial height of 800 km with a mass to surface ratio of 0.01 kg/m. The geometry of this sail is selected in a square shape and based on four beams. This geometry is chosen by compromising between the two elements of reliability and flexibility. The simulation results show that the designed sail can meet the mission requirements of the deorbiting system and take the satellite out of orbit within 3.6 years.

کلیدواژه‌ها [English]

  • Orbit Reduction Sail
  • Re-entry
  • Atmospheric Model
  • Space Debris
  • De-orbiting
[1] Chen, X., Ren, Y., Cai, Y., Li, N., and Jia, H., “Integrated Control of Attitude Maneuver and Vibration Suppression of Flexible Spacecraft Based on Magnetically Suspended Control Moment Gyros”, Proc. of the Inst. of Mech. Eng., Part C: J. of Mech. Eng. Sci., p. 0954406220942801, 2020.
[2] Golestani, M., Esmailzadeh, S.M., and Mobayen, S., “Fixed-time Control for High-precision Attitude Stabilization of Flexible Spacecraft”, European Journal of Control, Vol. 57, pp. 222-231, 2020.
[3] Sendi, C. “Attitude Stabilization during Retargeting Maneuver of Flexible Spacecraft Subject to Time Delay and Actuators Saturation”, 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 2020.
[4] Liu, Y., Fu, Y., He, W., and Hui, Q., “Modeling and Observer-based Vibration Control of a Flexible Spacecraft with External Disturbances”, IEEE Transactions on Industrial Electronics, Vol. 66, No. 11, pp. 8648-8658, 2018.
[5] Sun, H., Hou, L., Zong, G., and Guo, L., “Composite Anti-disturbance Attitude and Vibration Control for Flexible Spacecraft”, IET Control Theory & Applications, Vol. 11, pp. 2383-2390, 2017.
[6] Liu, L., Cao, D., and Wei, J., “Rigid-flexible Coupling Dynamic Modeling and Vibration Control for Flexible Spacecraft Based on Its Global Analytical Modes”, Science China Technological Sciences, Vol. 62, pp. 608-618, 2019.
[7] Zhu, W., Zong, Q., and Tian, B., “Adaptive Tracking and Command Shaped Vibration Control of Flexible Spacecraft”, IET Control Theory & Applications, Vol. 13, pp. 1121-1128, 2019.
[8] Chang, J.-L.  and Wu, T.-C., “Dynamic Compensator-based Output Feedback Controller Design for Uncertain Systems with Adjustable Robustness”, Journal of Control Science and Engineering, Vol. 2018, pp. 1-9, 2018.
[9] Chen, H., Song, S., and Li, X., “Robust Spacecraft Attitude Tracking Control with Integral Terminal Sliding Mode Surface Considering Input Saturation”, Transactions of the Institute of Measurement and Control, Vol. 41, pp. 405-416, 2019.
[10] Yuan, C.-Q., Li, J.-F., Wang, T.-S., and Baoyin, H.-X., “Robust Attitude Control for Rapid Multi-Target Tracking in Spacecraft Formation Flying”, Applied Mathematics and Mech., Vol. 29, pp. 185-198, 2008.
[11] De Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., and Zhang, F., Lyapunov-based Control of Mechanical Systems, Springer Science & Business Media, New York, USA, 2012.
[12] Ge, S.S., Lee, T.H., and Zhu, G., “Genetic Algorithm Tuning of Lyapunov-based Controllers: An Application to a Single-link Flexible Robot System”, IEEE Transactions on Industrial Electronics, Vol. 43, pp. 567-574, 1996.
[13] Lyapunov, A.M., “The General Problem of the Stability of Motion”, International Journal of Control, Vol. 55, pp. 531-534, 1992.
[14] Zhong, C., Chen, Z., and Guo, Y., “Attitude Control for Flexible Spacecraft with Disturbance Rejection”, IEEE Trans. on Aer. and Elec. Sys., Vol. 53, pp. 101-110, 2017.
[15] Abdessameud, A. and Tayebi, A., “Attitude Synchronization of a Spacecraft Formation Without Velocity Measurement”, 47th IEEE Conf.e on Decision and Control, Cancun, Mexico, 2008.
[16] Mehrabian, A.R., Tafazoli, S., and Khorasani, K., “Coordinated Attitude Control of Spacecraft Formation Without Angular Velocity Feedback: a Decentralized Approach”, AIAA Guidance, Navigation, and Control Conf., Portland, Oregon, USA, 2009.
[17] Hu, Q., Shi, P., and Gao, H., “Adaptive Variable Structure and Commanding Shaped Vibration Control of Flexible Spacecraft”, Journal of Guidance, Control, and Dynamics, Vol. 30, pp. 804-815, 2007.
[18] Ye, D. and Sun, Z., “Variable Structure Tracking Control for Flexible Spacecraft”, Aircraft Engineering and Aerospace Technology: An International Journal, Vol. 88, pp. 508-514, 2016.
[19] Mazinan, A., Pasand, M., and Soltani, B., “Full Quaternion Based Finite-time Cascade Attitude Control Approach Via Pulse Modulation Synthesis for a Spacecraft”, ISA tran., Vol. 58, pp. 567-585, 2015.
[20] Song, G. and Agrawal, B.N., “Vibration Suppression of Flexible Spacecraft During Attitude Control”, Acta Astronautica, Vol. 49, pp. 73-83, 2001.
[21] Chakrabarti, D., and Selvaganesan, N., “PD and PDβ Based Sliding Mode Control Algorithms with Modified Reaching Law for Satellite Attitude Maneuver”, Advances in Space Research, Vol. 65, pp. 1279-1295, 2020.
[22] Ran, D., Chen, X., de Ruiter, A., and Xiao, B., “Adaptive Extended-state Observer-based Fault Tolerant Attitude Control for Spacecraft with Reaction Wheels”, Acta Astr., Vol. 145, pp. 501-514, 2018.
[23] Wang, J., Wu, J., Liu, W., and Ji, H., “Coupling Attitude Control for Flexible Spacecraft with Rotating Structure”, in  4th International Conference on Robotics and Automation Sciences (ICRAS),  Wuhan, China, 2020.
[24] Newman, S.M., Active Damping Control of a Flexible Space Structure Using Piezoelectric Sensors and Actuators, Naval Postgraduate School, Monterey, CA, USA, 1992.
[25] Weldegiorgis, R., Krishna, P., and Gangadharan, K., “Vibration Control of Smart Cantilever Beam Using Strain Rate Feedback”, Procedia Materials Science, Vol. 5, pp. 113-122, 2014.
[26] Hall, J.F., “Problems Encountered from the Use (or Misuse) of Rayleigh Damping”, Earthquake eng. & struc. dyn., Vol. 35, pp. 525-545, 2006.