نوع مقاله : علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، دپارتمان مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

2 استادیار، دپارتمان مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

در این مقاله فلاتر تیر کامپوزیتی تقویت شده با نانولوله‌‌های کربنی دارای جرم متصله تحلیل و ارائه می‌شود. ناپایداری آیروالاستیک یک تیر مستطیل شکل با شرایط تکیه‌گاهی مختلف ارائه شده است. معادلات حاکم بر ارتعاشات این سیستم دینامیکی بر اساس اصل همیلتون تعیین گردیده است و سپس با حل معادلات به کمک روش مربعات تفاضلی تعمیم یافته در نهایت فرکانس طبیعی سیستم دینامیکی مذکور محاسبه گردید. در مقایسه‌هایی که با نتایج پژوهش‌های پیشین صورت پذیرفت تطابق قابل قبولی مشاهده شد. سپس به بررسی اثرات تقویت کننده نانولوله کربنی و اثرات جرم متصله بر فرکانس و پایداری تیر مذکور پرداخته شده است. نتایج نشان می‌دهد فرکانس بی بعد با توزیع یکنواخت در کلیه شرایط مرزی با افزایش نسبت طول به ضخامت فرکانس کاهش پیدا می‌کند، همچنین پدیده فلاتر برای تیریکسرگیردار با توزیع کاهشی- افزایشی نسبت به توزیع یکنواخت مطلوب‌تر می‌باشد، و با حرکت جرم برای تیر یکسرگیردار از ابتدای تیر به مرکز تیر فرکانس کاهش پیدا می‌کند.

کلیدواژه‌ها

موضوعات

[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
[2] V. Anumandla, and R. F. Gibson, “A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites,” Composites Part A: Applied Science and Manufacturing, vol. 37, pp. 2178-2185, 2006.
[3] M. Griebel, and J. Hamaekers, “Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites,” Computer methods in applied mechanics and engineering, vol. 193, pp. 1773-1788, 2004.
[4] Y. Han, and J. Elliott, “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites,” Computational Materials Science, vol. 39, pp. 315-323, 2007.
[5] G. D. Seidel, and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mechanics of Materials, vol. 38, pp. 884-907, 2006.
[6] M. H. Yas, and M. Heshmati, “Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load,” Applied Mathematical Modelling, vol. 36, pp. 1371-1394, 2012.
[7] K. M. Liew, Z. X. Lei, and L. W. Zhang, “Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review,” Composite Structures, vol. 120, pp. 90-97, 2015.
[8] S. K. Soni, B. Thomas, and V. R. Kar, “A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications,” Materials Today Communications, vol. 25, pp. 101546, 2020.
[9] S. K. Soni, B. Thomas, A. Swain, and T. Roy, “Functionally graded carbon nanotubes reinforced composite structures: An extensive review,” Composite Structures, vol. 299, pp. 116075, 2022.
[10] H. Asadi, and Q. Wang, “An investigation on the aeroelastic flutter characteristics of FGCNTRC beams in the supersonic flow,” Composites Part B: Engineering, vol. 116, pp. 486-499, 2017.
[11] M. Heidari, and H. Arvin, “Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes,” Journal of Vibration and Control, vol. 25, pp. 2063-2078, 2019.
[12] M. Mohammadimehr, A. A. Monajemi, and H. Afshari, “Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams,” Microsystem Technologies, vol. 26, pp. 3085-3099, 2020.
[13] Z. G. Song, L. W. Zhang, and K. M. Liew, “Aeroelastic analysis of CNT reinforced functionally graded composite panels in supersonic airflow using a higher-order shear deformation theory,” Composite Structures, vol. 141, pp. 79-90, 2016.
[14] L. W. Zhang, Z. G. Song, and K. M. Liew, “Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow,” Computer Methods in Applied Mechanics and Engineering, vol. 300, pp. 427-441, 2016.
[15] R. B. Bharati, M. Filippi, P. K. Mahato, and E. Carrera, “Flutter analysis of delaminated composite box-beam using higher-order kinematics,” Composite Structures, vol. 301, pp. 116145, 2022.
[16] S. B. Mousavi, and A. A. Yazdi, “Flutter of delaminated three-phase nano-composite beam-plates,” Mechanics of Advanced Materials and Structures, vol. 27, pp. 561-568, 2020.
[17] H. Esmaeili, and H. Arvin, “Nonlinear forced vibration of clamped-free beam reinforced by carbon nanotubes with an attached mass,” Iranian Journal of Mechanical Engineering, Vol. 21, pp. 158-180, 2019.
[18] O. Kompaz, and S. Telli, “Free vibration of a rectangular plate carrying distributed mass,” Journal of Sound and Vibration, vol. 251, pp. 39-57, 2002.
[19] P. Mardanpour, and P. Richards, “Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft,” Journal of Fluids and Structures, vol. 44, pp. 67-86, 2014.
[20] A. Jamshid, and N. Vahdat Azad, “Flutter Analysis of CNT-Reinforced Functionally Graded Composite Wing with Attached Mass,” Modares Mechanical Engineering, vol. 19, pp. 1855-1864, 2019.
[21] T. Vo-Duy, and V. Ho-Huu, “Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method,” Journal of Fluids and Structures, vol. 13, pp. 324-336, 2019.
[22] M. R. Nami, and M. Janghorban, “Free vibration of thick functionally graded carbon nanotube-reinforced rectangular composite plates based on threedimensional elasticity theory via differential quadrature method,” Advanced Composite Materials, vol. 24, pp. 439-450, 2015.
[23] Y. Kiani, “Free vibration of FG-CNT reinforced composite skew plates,” Aerospace Science and Technology, vol. 58, pp. 178-188, 2016.
[24] L. W. Zhang, Z. X. Lei, and K. M. Liew, “Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and elementfree IMLS-Ritz method,” Composite Structures, vol. 120, pp. 189-199, 2015.
[25] A. Sankar, S. Natarajan, T. Ben Zineb, and M. Ganapathi, “Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higher-order structural theory,” Composite Structures, vol. 127, pp. 340-355, 2015.
[26] Z. G. Song, F. M. Li, E. Carrera, and P. Hagedorn, “A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects,” Journal of Sound and Vibration, vol. 414, pp. 218-232, 2018.
[27] M. H. Yas, and N. Samadi, “Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic pressure Vessels and foundation,” International Journal of Pressure Vessels and Piping, vol. 98, pp. 119-128, 2012.