[1] V. P. K. C. Wang and F. Y. Hadaegh, “Coordination and control of multiple microspacecraft moving in formation,” J. Astronaut. Sci. 44(3), 315–355 (1996).
[2] V. Kapila, A. G. Sparks, J. M. Buffington and Q. Yan, “Spacecraft formation flying: Dynamics and control,” J. Guid. Control Dyn. 23, 561–564, May–Jun. (2000).
[3] Wang, B., and et al. "Formation Flight of-1unmanned Rotorcraft Based on Robust a Perfect Tracking Approach”, American Control Conference (ACC), IEEE, 2012.
[4] M. R. Anderson and A. C. Robbins, “Formation Flight as a Cooperative Game,” Proceedings of the AIAA Guidance, Navigation, and Control Conferences, AIAA-984124, Boston, MA (1998) pp. 244–251.
[5] P. McDowell, J. Chen and B. Bourgeois, “UUV Teams, Control from a Biological Perspective,” Proceedings of the IEEE Oceans Conference Record, Mississippi (2002) 1, pp. 331– 337.
[6] M. A. Lewis and K.-H. Tan, “High precision formation control of mobile robots using virtual structures,” Auton. Robots 4, 387–403 (1997).
[7] Habibi Totekani, M., Toloei, A., Ghasemi, R., & Ghaderi, F. (2023). Formation control of multi-Quadrotor using leader-follower Method Based on Sliding Mode. Aerospace Knowledge and Technology Journal, 12(1).
[8] Manouchehri, P., Ghasemi, R., & Toloei, A. (2020). Distributed fuzzy adaptive sliding mode formation for nonlinear multi-quadrotor systems. International Journal of Engineering, 33(5), 798-804.
[9] Saffarian, M. and F. Fahimi. A novel leader-follower framework for control of helicopter formation. in 2007 IEEE Aerospace Conference. 2007. IEEE.
[10] Fahimi, F., Full formation control for autonomous helicopter groups. Robotica, 2008. 26(2): p. 143.
[11] Wang, Z., Y. He, and J. Han. Multi-unmanned helicopter formation control on relative dynamics. in 2009 International Conference on Mechatronics and Automation. 2009. IEEE
[12] Wang, D., Q. Zong, and B. Zhang. Distributed adaptive finite-time formation control of multiple UAV helicopter system. in 2018 37th Chinese Control Conference (CCC). 2018. IEEE
[13] B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft. Norwell, MA: Kluwer, 2003
[14] J. Gadewadikar, F. Lewis, K. Subbarao, and B. Chen, “Structured command and control loop design for unmanned helicopters,” J. Guid., Control, Dyn., vol. 31, pp. 1093–1102, 2008
[15] A. Budiyonoa and S. Wibowob, “Optimal tracking controller design for a smallscale helicopter,” J. Bionic Eng., vol. 4, no. 4, pp. 271–280, 2007.
[16] J. Shin, K. Nonami, D. Fujiwara, and K. Hazawa, “Model-based optimal attitude and positioning control of small-scale unmanned helicopter,” Robotica, vol. 23, pp. 51–63, 2005.
[17] Alvarenga, J., Vitzilaios, N. I., Valavanis, K. P., & Rutherford, M. J. (2015). Survey of unmanned helicopter model-based navigation and control techniques. Journal of Intelligent & Robotic Systems, 80(1), 87-138.
[18] B. Mettler, M. B. Tischler, & T. Kanade, “System identification of small-size unmanned helicopter dynamics, “In Annual Forum Proceedings- American Helicopter Society, Vol. 2, pp. 1706-1717, 1999.
[19] I. A., Raptis, & K. P. Valavanis, “Linear and nonlinear control of small-scale unmanned helicopters,” Vol. 1, Netherlands: Springer, 2011.
[20] M. Lungu, “Sisteme de Conducere a Zborului. Effretikon”, Switzerland: Sitech Publisher, 2008.
[21] Guillaume J.J. Ducard, “Fault-tolerant Flight Control and Guidance Systems”, Department of Mechanical and Process Engineering, 2009.
[22] E.F. Camacho & C. Bordons, “Model Predictive Control”, First Edition, Springer, New York, 1998.
[23] T. Oktay, & C. Sultan, “Constrained predictive control of helicopters”, Aircraft Engineering and Aerospace Technology, 2013.