[1] رمضانی، س، معینی ع. تخمین عمر مفید باقیمانده تجهیزات دفاعی با استفاده از مدل مدیریت سلامت تجهیزات و پیش بینی عیوب(PHM)، (مطالعه موردی: سامانه راداری)". فصلنامه مدیریت زنجیره تامین، شماره 51، بهار 1395 ص 4 (1395).
[2] رمضانی، س، کاربرد آنالیز ارتعاشات و شبکه عصبی Wavelet در تشخیص و پیشبینی هوشمند عیوب مکانیکی، مطالعه موردی تعیین عمر باقیمانده یاتاقان چیلر، ششمین کنفرانس نگهداری و تعمیرات ایران، 1390.
[3] Heydari, A., Haghighi, S. S., & Ahmadi, A. (2017). Prediction of Remaining Useful Life of Equipment based on Condition Monitoring and Expert Knowledge Using Neuro-Fuzzy Inference System. International Journal of Industrial Engineering & Production Management., 28(1), 27-42.
[4] Sikorska, J., Hodkiewicz, M., D’Cruz, A., Astfalck, L., & Keating, A. (2016). A collaborative data library for testing prognostic models. In PHM Society European Conference (Vol. 3, No. 1).
[5] Xia, T., Dong, Y., & Xiao, L. Shichang Du, Ershun Pan, and Lifeng Xi. 2018.“. Recent Advances in Prognostics and Health Management for Advanced Manufacturing Paradigms.” Reliability Engineering & System Safety, 178, 255-268.
[6] Lin, Y., Chen, M., Zhou, D. .Online probabilistic operational safety assessment of multimode engineering systems using Bayesian methods, Reliability Engineering and System Safety, vol. 119, 2013, 150-157.
[7] Mosallam, A., Medjaher, K., Zerhouni, N. .Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction, Journal of Intelligent Manufacturing, 27(5), 2016, 1037-1048.
[8] Huang, H. Z., Wang, H. K., Li, Y. F., Zhang, L., & Liu, Z. (2015). Support vector machine based estimation of remaining useful life: current research status and future trends. Journal of Mechanical Science and Technology, 29, 151-163.
[9] Tian, Z. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of intelligent Manufacturing, 23, 227-237.
[10] Tian, Z., Wong, L., & Safaei, N. (2010). A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mechanical Systems and Signal Processing, 24(5), 1542-1555.
[11] Ali, J. B., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing, 56, 150-172.
[12] Giantomassi, A., Ferracuti, F., Benini, A., Ippoliti, G., Longhi, S., Petrucci, A. .Hidden Markov Model for Health Estimation and Prognosis of Turbofan Engines, Vol. 3 2011 ASME/IEEE Int. Conf. Mechatron. Embed. Syst. Appl. Parts A B, 2011, no. 681-689.
[13] Kundu, P., Darpe, A. K., & Kulkarni, M. S. (2020). An ensemble decision tree methodology for remaining useful life prediction of spur gears under natural pitting progression. Structural Health Monitoring, 19(3), 854-872.
[14] Ng, S. S., Xing, Y., & Tsui, K. L. (2014). A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 118, 114-123.
[15] Gupta, M., Wadhvani, R., & Rasool, A. (2023). A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network. Knowledge-Based Systems, 259, 110070.
[16] Li, Y., Chen, Y., Hu, Z., & Zhang, H. (2023). Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models. Reliability Engineering & System Safety, 229, 108869.
[17] Li, X., Jiang, H., Xie, M., Wang, T., Wang, R., & Wu, Z. (2022). A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with multi-source domains. Advanced Engineering Informatics, 51, 101480.
[18] Ma, M., Sun, C., Mao, Z., & Chen, X. (2021). Ensemble deep learning with multi-objective optimization for prognosis of rotating machinery. ISA transactions, 113, 166-174.
[19] Zhao, B., & Yuan, Q. (2021). A novel deep learning scheme for multi-condition remaining useful life prediction of rolling element bearings. Journal of Manufacturing Systems, 61, 450-460.
[20] Chen, Y., Peng, G., Zhu, Z., & Li, S. (2020). A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Applied Soft Computing, 86, 105919.
[21] Yu, W., Kim, I. Y., & Mechefske, C. (2020). An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme. Reliability Engineering & System Safety, 199, 106926.
[22] Yang, B., Lei, Y., Jia, F., & Xing, S. (2019). An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mechanical Systems and Signal Processing, 122, 692-706.
[23] Jia, F., Lei, Y., Guo, L., Lin, J., & Xing, S. (2018). A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing, 272, 619-628.
[24] Jia, F., Lei, Y., Guo, L., Lin, J., & Xing, S. (2018). A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing, 272, 619-628.
[25] Razavi-Far, R., Farajzadeh-Zanjani, M., Chakrabarti, S., & Saif, M. (2016, June). Data-driven prognostic techniques for estimation of the remaining useful life of lithium-ion batteries. In 2016 IEEE international conference on prognostics and health management (ICPHM) (pp. 1-8). IEEE.
[26] Jin, S., Sui, X., Huang, X., Wang, S., Teodorescu, R., & Stroe, D. I. (2021). Overview of machine learning methods for lithium-ion battery remaining useful lifetime prediction. Electronics, 10(24), 3126.
[27] Li, P., Zhang, Z., Grosu, R., Deng, Z., Hou, J., Rong, Y., & Wu, R. (2022). An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries. Renewable and Sustainable Energy Reviews, 156, 111843.
[28] Liu, J., Lei, F., Pan, C., Hu, D., & Zuo, H. (2021). Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion. Reliability Engineering & System Safety, 214, 107807.