نوع مقاله : علمی- ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هواپیما بدون سرنشین یک نوع هواپیما است که بدون نیاز به سرنشین انسانی عمل می‌کند. این هواپیماها قادر به پرواز خودکار، بدون نیاز به کنترل از راه دور هستند و بیشتر به وسیله کامپیوتر و سنسورها کنترل می‌شوند. هواپیما بدون سرنشین در بسیاری از صنایع مورد استفاده قرار می‌گیرد و کاربرد‌های مختلفی دارد که شامل ارتباطات، نظارت و عکاسی و فیلمبرداری هوایی، امنیت و نظارت بر مرزها، جستجو و نجات، مطالعات علمی و محیط زیست، کشاورزی و همچنین صنعت نظامی ‌می‌باشد. از مزایای استفاده از هواپیمای بدون سرنشین می‌توان به کارایی بالا، دسترسی به مناطق دشوار و خطرناک، کاهش هزینه‌ اشاره کرد. با این حال، استفاده از هواپیما بدون سرنشین همچنین با چالش‌ها و مشکلاتی همراه است. یکی از مهم ترین مشکلات ، خطر از دست دادن کنترل و مشکلات ایرودینامیکی و اتمام سوخت و در زوایای حمله‌ی مختلف است. بهبود ضرایب آیرودینامیکی می‌تواند به افزایش امنیت پرواز و کاهش خطرات مربوط به از دست دادن کنترل هواپیما کمک کند. در این پژوهش به برسی المان‌ها، تغیر شکل‌های ایجاد شده روی بال هواپیما و سطوح کنترلی‌های کاربردی جهت بهبود ضرایب آیرودینامیکی می‌پردازیم.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating selected methods to improve aerodynamic coefficients and better performance of UAV

نویسندگان [English]

  • Mohamad hossein Moghimi Esfandabadi 1
  • Mohammad Hassan Djavareshkian 2

1 MSc Student, Department of Mechanics, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Department of Mechanics, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

An unmanned aircraft (UAV) is a type of aircraft that operates without the need for a human passenger. These planes are able to fly automatically, without the need for remote control, and are mostly controlled by computers and sensors. UAVs are used in many industries and have various applications, including communications, surveillance, aerial photography and videography, security and border surveillance, search and rescue, scientific and environmental studies, agriculture, as well as the military industry. The advantages of using UAVs include high efficiency, access to difficult and dangerous areas, and cost reduction. However, the use of UAVs also comes with challenges and problems. One of the most important problems is the risk of losing control, aerodynamic problems, and running out of fuel at different angles of attack. Improving aerodynamic coefficients can help increase flight safety and reduce risks related to losing control of the aircraft. In this research, we examine the elements, changing the shapes created on the airplane wing, and applying control surfaces to improve the aerodynamic coefficients.

کلیدواژه‌ها [English]

  • Aerodynamic coefficients
  • UAV
  • Control surfaces
  • Wing
  • Dog tooth

‏ 1  

[1] C. Koparan, A. B. Koc, C. V. Privette, and C. B. Sawyer, "Autonomous in situ measurements of noncontaminant water quality indicators and sample collection with a UAV," Water, vol. 11, no. 3, p. 604, March 2019,
 https://doi.org/10.3390/w11030604.
[2] C. Koparan, A. B. Koc, C. V. Privette, and C. B. Sawyer, "In situ water quality measurements using an unmanned aerial vehicle (UAV) system," Water, vol. 10, no. 3, p. 264, February 2018,
 https://doi.org/10.3390/w10030264.
[3] J. Brett and A. Ooi, "Effect of sweep angle on the vortical flow over delta wings at an angle of attack of 10," Journal of Engineering Science and Technology, vol. 9, no. 6, pp. 768-781, 2014,
[4] R. A. Navy, "UNMANNED AERIAL VEHICLES AND THE FUTURE NAVY," May 2001.
[5] R. Martinez-Val, "Flying wings. A new paradigm for civil aviation?" Acta Polytechnica, vol. 47, no. 1, January 2007,
https://doi:10.14311/914.
[6] M. K. Sobhani, M. Dehghani Manshadi, M. Bazzazzadeh, and M. Ilbeygi, "Experimental Investigation of The Flow Field Over a Non-Slender lambda Shaped Wing by Pressure Measurement," Journal of Aeronautical Engineering, vol. 17, no. 1, pp. 10-21, June 2015.
[7] J. E. Guerrero, D. Maestro, and A. Bottaro, "Biomimetic spiroid winglets for lift and drag control," Comptes Rendus Mecanique, vol. 340, no. 1-2, pp. 67-80, February 2012,
https://doi.org/10.1016/j.crme.2011.11.007.
[8] S. M. Adams, and C. J. Friedland, "A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management," In 9th international workshop on remote sensing for disaster response, vol. 8, pp. 1-8, September 2011,
[9] Z. J. Li, and D. L. Ma, "Control characteristics analysis of split-drag-rudder," In Applied Mechanics and Materials, vol. 472, pp. 185-190, January 2014,
https://doi:10.4028/www.scientific.net/AMM.472.185.
[10] R. L. T. Bevan, D. J. Poole, C. B. Allen, and et al, "Adaptive surrogate-based optimization of vortex generators for tiltrotor geometry," Journal of Aircraft, vol. 54, pp. 1011-1024, May 2017,
https://doi:10.2514/1.C033838.
[11] R. Whitford, "Four decades of transonic fighter design," Journal of Aircraft, vol. 28, no. 12, pp. 805-811, 1991,
https://doi.org/10.2514/3.46102.
[12] H. Shim and S.-O. Park, "Passive control of pitch-break of a BWB UCAV model using vortex generator," Journal of Mechanical Science and Technology, vol. 29, pp. 1103-1109, 2015,
https://doi:10.1007/s12206-015-0222-y.
[13] S. B. Rao, A. Chatterjee, D. B. Landrum, and K. Kanistras, "Preliminary analysis of bio-inspired symmetric and asymmetric winglet deformation," in AIAA Scitech 2021 Forum, p. 0341, 2021,
https://doi.org/10.2514/6.2021-0341.
[14] S. B. Rao, A. Chatterjee, and K. Kanistras, "System Identification of an Unmanned Aerial Vehicle with Actuated Wingtips," Journal of Intelligent & Robotic Systems, vol. 105, no. 1, p. 11, 2022,
doi:10.1007/s10846-022-01599-z.
[15] Y. Zhang, M. Zhang, and C. Cai, "Flow control on wind turbine airfoil affected by the surface roughness using leading-edge protuberance," Journal of Renewable and Sustainable Energy, vol. 11, no. 6, 2019,
https://doi.org/10.1063/1.5116414.
[16] C. Cai, Z. Zuo, M. Morimoto, T. Maeda, Y. Kamada, and S. Liu, "Two-step stall characteristic of an airfoil with a single leading-edge protuberance," AIAA Journal, vol. 56, no. 1, pp. 64-77, 2018,
https://doi.org/10.2514/1.J053142.
[17] H. Kim, J. Kim, and H. Choi, "Flow structure modifications by leading-edge tubercles on a 3D wing," Bioinspiration & biomimetics, vol. 13, no. 6, p. 066011, 2018,
https://doi.org/10.3390/biomimetics4040072.
[18] A. Esmaeili, H. Delgado, and J. Sousa, "Numerical simulations of low-Reynolds-number flow past finite wings with leading-edge protuberances," Journal of Aircraft, vol. 55, no. 1, pp. 226-238, 2018,
https://doi.org/10.18311/jmmf%2F2023%2F34498.
[19] D. Miklosovic, M. Murray, L. Howle, and F. Fish, "Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers," Physics of fluids, vol. 16, no. 5, pp. L39-L42, 2004,
https://doi.org/10.1063/1.1688341.
[20] Z. Ni, M. Dhanak, and T.-c. Su, "Performance characteristics of airfoils with leading-edge tubercles and an internal slot," AIAA Journal, vol. 57, no. 6, pp. 2394-2407, 2019,
https://doi.org/10.3390/app12073405.
[21] M. A. Shorbagy, B. El-hadidi, G. El-Bayoumi, O. Said, and M. Fouda, "Experimental study on bio-inspired wings with tubercles," in AIAA SciTech 2019 Forum, p. 0848, 2019,
https://doi:10.2514/1. J059517.
[22] Jr. W. A. Newsom, D. R. Satran, and Jr. J. L. Johnson, "Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics," No. L-15101, June 1983,
https://doi.org/10.2514/6.1980-1844.
[23] J. K. Dickson, and F. B. Sutton, "The Effect of Wing Height on the Longitudinal Characteristics at High Subsonic Speeds of a Wing-fuselage-tail Combination Having a Wing with 40 Degrees of Sweepback and NACA Four-digit Thickness Distribution," No. NACA-RM-A55C30, May 1995.
[24] F. Neitzel, and J. Klonowski, "Mobile 3D mapping with a low-cost UAV system," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol. 38, p.C22, September 2011,
https://doi.org/10.3390/drones3040079.
[25] W. A. Newsom Jr, D. R. Satran, and J. L. Johnson Jr, "Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics," 1982,
https://doi.org/10.2514/6.1980-1844.
[26] M. H. Moghimi Esfandabadi and M. H. Djavareshkian, "Design and optimization of the wing fence of a lambda-shaped aircraft model to reduce the rolling moment coefficient," Technology in Aerospace Engineering, 2023,
https://doi:10. 22034.jtae.2024.8.2.2.
[27] C. Papadopoulos, S. Ioannidou, P. Panagiotou, and et al, "Numerical investigation of the impact of tubercles and wing fences on the aerodynamic behaviour of a fixed-wing, tactical Blended-Wing-Body UAV platform," JInIOP Conference Series: Materials Science and Engineering, vol. 1226, no. 1, p. 012015, February 2022,
https://doi.org/10.1088/1757-899X/1226/1/012015.
[28] J. E. Guerrero, D. Maestro, and A. Bottaro, "Biomimetic spiroid winglets for lift and drag control," Comptes Rendus Mecanique, vol. 340, no. 1-2, pp. 67-80, 2012,
https://doi.org/10.1016/j.crme.2011.11.007.
[29] Y. Oda, K. Rinoie, and T. Yuhara, "Studies on wingtip geometries by optimum spanwise lift distribution design method," in 55th AIAA Aerospace Sciences Meeting, p. 1657, 2017,
https://doi.org/10.2514/6.2017-0001.
[30] A. Beechook and J. Wang, "Aerodynamic analysis of variable cant angle winglets for improved aircraft performance," in 2013 19th International Conference on Automation and Computing, IEEE, pp. 1-6, 2013.
[31] R. Hallion, “Retractable Mulitiple Winglets”, United States Patent Document, Patent No. US2007/0262205, 2007.
[32] G. Narayan and B. John, "Effect of winglets induced tip vortex structure on the performance of subsonic wings," Aerospace Science and Technology, vol. 58, pp. 328-340, 2016,
https://doi:10.1016/J.AST.2016.08.031.
[33] A. Sattarov, E. Udartsev, V. Rozbytskyi, and O. Zhdanov, "Aerodynamic performance improvement of UAV by means of leading-edge vortex generators," in 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), IEEE, pp. 97-101, 2019,
https://doi:10.3895/rbfta.v7n1.11844.
[34] E. Udartsev, O. Zhdanov, V. Rozbytskyi, and A. Sattarov, "Effect of Leading-Edge Volumic Shape Vortex Generators on Static Hysteresis of Unmanned Aerial Vehicle Wing," in 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), IEEE, pp. 12-16, 2019,
https://doi:10.1109/APUAVD47061.2019.8943911.
[35] T. K. Zhen, M. Zubair, and K. A. Ahmad, "Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance," Chinese Journal of Aeronautics, vol. 24, no. 5, pp. 577-583, 2011,
https://doi.org/10.3390/en12234583.
[36] R. Barrett, and S. Farokhi, "On the aerodynamics and performance of active vortex generators," In 11th
Applied Aerodynamics Conference, p. 3447, August 1993,
https://doi.org/10.2514/6.1993-3447.
[37] E. Gnapowski, "Review of Selected Methods for Increasing the Aerodynamic Force of the Wing," Advances in Science and Technology. Research Journal, vol. 13, no. 1, pp. 60-67, 2019,
https://doi.org/10.12913/22998624/103858.
[38] E. Gnapowski, "Selected structural elements of the wing to increase the lift force," Autobusy: technika, eksploatacja, systemy transportowe, vol. 19, 2018,
https://doi10.24136/atest.2018.494.
[39] E. Udartsev, S. Alieksieienko, and O. Zhdanov, "Unsteady Aerodynamics of Vortex Active Wing of UAV at High and Supercritical Angles of Attack," Electronics and control systems, no. 4, pp. 40-45, 2015.
[40] W. Krueger, "Systematic wind-tunnel measurements on a laminar wing with nose flap," 1947.
[41] A. Carruthers, G. Taylor, S. Walker, and A. Thomas, "Use and function of a leading-edge flap on the wings of eagles," in 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p. 43, 2007,
https://doi 10.1088/1748-3182/9/2/025013.
[42] N. Bakhtian, H. Babinsky, A. Thomas, and G. Taylor, "The low Reynolds number aerodynamics of leading-edge flaps," in 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 662, Jan 2007,
https://doi.org/10.2514/1.33001.
[43] F. E. Weick and C. J. Wenzinger, "The characteristics of a Clark Y wing model equipped with several forms of low-drag fixed slots," Annual Report of the National Advisory Committee for Aeronautics, vol. 18, p. 155, 1932.
[44] F. E. Weick and C. J. Wenzinger, "The characteristics of a Clark Y wing model equipped with several forms of low-drag fixed slots," Annual Report of the National Advisory Committee for Aeronautics, vol. 18, p. 155, 1932.
[45] W. F. Phillips, Mechanics of flight. John Wiley & Sons, 2004.
[46] J. W. Smith, Variable-camber systems integration and operational performance of the AFTI/F-111 mission adaptive wing. National Aeronautics and Space Administration, Office of Management …, 1992.
[47] P. K. Rudolph, "High-lift systems on commercial subsonic airliners," 1996.
[48] A. C. Demoret and C. F. Wisniewski, "The impact of a notched leading edge on performance and noise signature of unmanned aerial vehicle propellers," in AIAA Scitech 2019 Forum, p. 0159, 2019,
https://doi.org/10.2514/6.2019-0159.
[49] S. V. Drovetski, "Influence of the trailing-edge notch on flight performance of galliforms," The Auk, vol. 113, no. 4, pp. 802-810, 1996,
https://doi.org/10.1006/bijl.2001.0533.
[50] N. Cubin, "Effects of Trailing Edge Notches on Micro Air Vehicle Performance," WORCESTER POLYTECHNIC INSTITUTE, 2007.
[51] P. Panitsrisit and A. Ruangwiset, "Sensor system for fault detection identification and accommodation of elevator of UAV," in SICE Annual Conference, IEEE, pp. 1035-1040, 2011,
https://doi: 10.13700/j.bh.1001-5965.2014.0522.
[52] G. Ducard, K. C. Kulling, and H. P. Geering, "Evaluation of reduction in the performance of a small UAV after an aileron failure for an adaptive guidance system," in 2007 American Control Conference, IEEE, pp. 1793-1798, 2007,
https://doi: 10.1109/ACC.2007.4282845.
[53] Z. Liu and B. Zhang, "Investigation on a Flow Coupling Rudder for Directional Control of a Low-Aspect Tailless Configuration with Diamond-Shaped Wing," Aerospace, vol. 9, no. 2, p. 79, 2022,
https://doi.org/10.3390/aerospace9020079.
[54] G. Stenfelt and U. Ringertz, "Lateral stability and control of a tailless aircraft configuration," Journal of Aircraft, vol. 46, no. 6, pp. 2161-2164, 2009,
https://doi.org/10.2514/1.41092.
[55] K. C. Huber, D. D. Vicroy, A. Schuette, and A. Huebner, "UCAV model design and static experimental investigations to estimate control device effectiveness and S&C capabilities," in 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2002.
[56] J. Rajput, W. G. Zhang, and X. B. Qu, "A differential configuration of split drag-rudders with variable bias for directional control of flying-wing," Applied Mechanics and Materials, vol. 643, pp. 54-59, 2014,
https://doi.org/10.4028/www.scientific.net/AMM.643.54.
[57] A. Madani, M. H. Djavareshkian, and R. KARIMI KELAYEH, "Optimization of split drag rudder mechanism at different angles of attack in a flying wing airplane," Fluid Mechanics & Aerodynamics Journal, vol. 11, no. 1, pp. 1-16, 2022.
[58] A. Madani, M. H. Moghimi-Esfandabadi, and M. H. Javareshkian, "Investigating the effect of the placement of the split drag rudder control system along the wing span of a flying wing aircraft on rolling and yawing moments," Aerospace Knowledge and Technology Journal, vol. 11, no. 2, pp. 25-37, 2023.
[59] K. C. Huber, D. D. Vicroy, A. Schuette, and A. Huebner, "UCAV model design and static experimental investigations to estimate control device effectiveness and S&C capabilities," in 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2002,
https://doi.org/10.2514/1.C033808.
[60] S. Jixiang, H. Yong, S. Jichuan, L. Yonghong, and P. Xin, "Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration," 空气动力学学报, vol. 33, no. 3, pp. 296-301, 2015,
https://doi:10.7638/kqdlxxb-2023.0112.
[61] X. Zihan, M. Tielin, G. Wenbiao, Y. Chuanguang, and L. Gen, "Applications of active flow control technologies in low aspect ratio flying wing UAV aerodynamic design," in 2017 IEEE International Conference on Unmanned Systems (ICUS), IEEE, pp. 44-48, 2017,
https://doi:10.1109/ICUS.2017.8278315.
[62] B. Jeong et al., "Yaw-control spoiler design using design of experiments-based wind tunnel testing," Journal of Aircraft, vol. 52, no. 2, pp. 713-718, 2015,
https://doi:10.2514/1.C032747.
[63] W. Gillard, K. Dorsett, W. Gillard, and K. Dorsett, "Directional control for tailless aircraft using all moving wing tips," in 22nd Atmospheric Flight Mechanics Conference, p. 3487, 2006,
https://doi.org/10.2514/6.1997-3487.
[64] D. Bie, W. Gan, T. Ma, Q. Zhang, and X. Zhang, "Development of the AMT in yawing control of flying wing UAVs," in 2017 IEEE International Conference on Unmanned Systems (ICUS), IEEE, pp. 404-406, 2017,
https://doi:10.1109/ICUS.2017.8278378.
[65] P. Löchert, K. C. Huber, M. Ghoreyshi, and J. Allen, "Control device effectiveness studies of a 53∘ swept flying wing configuration. Experimental, computational, and modeling considerations," Aerospace Science and Technology, vol. 93, p. 105319, 2019, https://doi.org/10.1016/j.ast.2019.105319