طراحی مفهومی ماهواره‌های مکعبی ناوبری برای تعیین موقعیت محلی کشور ایران با رویکرد ماژولار

نوع مقاله : یادداشت فنی

نویسندگان

1 عضو هیات علمی

2 فارغ التحصیل کارشناسی ارشد مهندسی فضایی

3 مهندسی فضایی

چکیده

هدف این مقاله طراحی منظومة نانوماهواره­های مکعبی ناوبری برای تعیین موقعیت محلی کشور ایران با رویکرد استفاده از قطعات و المان‌های تجاری موجود می‌باشد. در این راستا، ماتریس طراحی نانوماهواره­های مکعبی به منظور تعیین الزامات موقعیت محلی استخراج شده است. ابتدا، با استفاده از پردازش آماری نانوماهواره­های مکعبی با مأموریت مشابه، اطلاعات مربوط به زیرسامانه­های مختلف تعیین می‌شود. سپس، مطابق این پردازش داده­ها، مشخصات کلی زیرسامانه­های مختلف (کنترل وضعیت، کنترل حرارت، تأمین توان، سازه و مخابرات)، اعم از توان، جرم، هزینه و حجم استخراج شده است. در ادامه، با انتخاب محمولة مناسب برای انجام مأموریت مدنظر و بررسی جنبه­های مختلف و ارضای الزامات ماتریس طراحی از کاتالوگ­های زیرسامانه­ها و قطعات تجاری­سازی شده موسوم به "COTS" استفاده شده است. همچنین، پوشش­دهی منظومه نسبت به موقعیت محلی کشور ایران از منظر دسترس‌پذیری نیز در نرم­افزار STK تحلیل و شبیه­سازی شده است. در نهایت، می­توان منظومة ماهواره‌های مکعبی با زیرسامانه­های مشخص (برگرفته از قطعاتCOTS) و درصد پوشش­دهی قابل قبول را برای تعیین موقعیت محلی کشور ایران پیشنهاد نمود.    

کلیدواژه‌ها


 [1] Sholomitsky, G.B., Prilutsky, O.F., and Rodin, V.G., “Infra-red Space Interferometer”, The 28th Int. Astro. Fed. Congress, Paper IAF-77-68, Prague, Czechoslovakia, Czech, 1977.
[2] Bristow, J., Folta, D., and Hartman, K., “A Formation Flying Technology Vision”, The AIAA Space Conf., AIAA Paper No. 2000-5194, Long Beach, CA, USA, 2000.
[3] Battrick, B., X-ray Evolving Universe Spectroscopy-the XEUS Mission Summary, ESA-SP 1242, ESA, Noordwijk, Netherlands, 2000.
[4] Fakoor, M., Ghorbani, M., and Bakhtiari, M., “New Approaches to Cover Regional Satellite System Design, Using GDOP”, Modares Mechanical Engineering J., Vol. 17, No. 5, pp. 193-200, 2017 (In Persian).
[5] Chung, S.-J., Bandyopadhyay, S., Foust, R., Subramanian, G.P., and Hadaegh, F.Y., “Review of Formation Flying and Constellation Missions, Using Nanosatellites”, Journal of Spacecraft and Rockets, Vol. 53, No. 3, 2016.
[6] “CYGNSS (Cyclone Global Navigation Satellite System)”, eoPortal, https://directory.eoportal.org/web /eoportal/satellite-missions/cmissions/cygnss [retrieved July 2015].
[7] Cutler, J., Ridley, A., and Nicholas, A., “Cubesat Investigating Atmospheric Density Response to Extreme Driving (CADRE)”, The AIAA/USU Conference on Small Satellites, Logan, UT, 2011.
 
[8] “Drag-Free CubeSat”, eoPortal, https://eoportal.org /web/eoportal/satellitemissions/content/-/article/ drag-free-cubesat [retrieved July 2015].
[9] Conklin, J., Nguyen, A., Hong, S., Buchman, S., Byer, R., Cutler, G., DeBra, D., and Hultgren, E., “Small Satellite Constellations for Earth Geodesy and Aeronomy”, The AIAA/USU Conference on Small Satellites, Logan, UT, 2013.
[10] Mannucci, A.J., Dickson, J., Duncan, C., and Hurst, K., “GNSS Geospace Constellation (GGC): A CubeSat Space Weather Mission Concept”, Jet Propulsion Lab., California Inst. of Technology, TR, Pasadena, CA, 2010.
[11] Klesh, A., Baker, J., Castillo-Rogez, J., Halatek, L., Murphy, N., Raymond, C., Sherwood, B., Bellardo, J., Cutler, J., and Lightsey, G., “INSPIRE: Interplanetary NanoSpacecraft Pathfinder in Relevant Environment”, The AIAA/USU Conference on Small Satellites, Logan, UT, 2013.
[12] “INSPIRE (Interplanetary NanoSpacecraft Pathfinder in a Relevant Environment)”, eoPortal, https://directory.eoportal.org/web/eoportal/satellite-missions/i/inspire [retrieved July 2015].
[13] Puig-Suari, J., Turner, C., and Ahlgren, W., “Development of the Standard CubeSat Deployer and a CubeSat Class Picosatellite”, The 2001 IEEE Aerospace Conference Proceedings, pp. 347–353, Big Sky, MT, USA, 2001.
[14] Twiggs, R., “Origin of CubeSat”, Chapter 5, Small Satellite: Past, Present and Future, The Aerospace Press, El Segundo, CA, USA, 2008.
 [15] Doncaster, B., Shulman, J., Bradford, J., and Olds, J., SpaceWorks’ 2016 Nano/Microsatellite Market Forecast. In The AIAA/USU Conference on Small Satellites, Logan, UT, USA, 2016.
[16] Zurbuchen, T.H., Engineering and Medicine, Achieving Science with CubeSats: Thinking Inside the Box, NAS-National Academies of Sciences, Washington DC, USA, 2016.
[17] Swartwout, M., “The First One Hundred CubeSats: A Statistical Look”, Journal of Small Satellites, Vol. 2, No. 2, pp. 213-233, 2013.
[18] Villela, T.,Costa, C.A., Brandão, A.M., Bueno, F.T., and Leonardi, R., “Towards the Thousandth CubeSat: A Statistical Overview”, International Journal of Aerospace Engineering, Vol. 3, pp. 1-13, 2019.
[19] Williamson, M., Cambridge Dictionary of Space Technology, Cambridge University Press, Cambridge, UK, 2001.
[20] Larson, W.J.  and Wertz, J.R., Space Mission Analysis and Design, MicroCosm Press, Portland, USA, 1999.
[21] Masoum, M.A.S., Investigation of Satellite Electrical Energy System, Iran University Science and Technology, Tehran, Iran, 2002 (In Persian).
[22] Czernik, S., Design of Thermal Control System for Compass-1, Diploma Thesis,University of Applied Sciences Aachen Germany,2004.