تاریخچه ماموریت های علمی اکتشافی گیاهی: اهداف و فناوری ها

نوع مقاله : علمی- ترویجی

نویسنده

مرکز زیست فضا و محیط زیست، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

چکیده

پیشرفت های اخیر در زمینه فناوری و ساخت فضاپیماهای جدید، راه را برای مطالعه دقیق تر گیاهان در محیط واقعی فضا هموار نمود. مطالعه رشد، نمو و تکوین گیاهان در فضا از دهه 1950 توسط روس ها و آمریکایی ها آغاز شده است. در دهه 1970، اولین آزمایشات گیاهی در رابطه با اثرات طولانی مدت میکروگراویتی بر گیاهان در فضاپیمای اسکای لب ایالات متحده آمریکا و ایستگاه فضایی سالیوت روسیه انجام شد. اخیرا ناسا زیستگاه گیاهی پیشرفته را بر روی ایستگاه بین المللی فضایی نصب نموده است. سیستم تصویربرداری پیشرفته طیف، سیستم تحویل مواد مغذی مداری منفعل و تحقیقات بیولوژیک در جعبه های ویژه- واحد تثبیت پتری دیش از جمله فناوری ها نوین ناسا برای مطالعات گیاهی و پرورش گیاهان در فضا می باشند. بنابراین هدف از ماموریت های علمی اکتشافی در حوزه علوم گیاهی: 1. تحقیقات بنیادین به منظور گسترش مرزهای دانش در زمینه زیست شناسی گیاهی و 2. توسعه یک سیستم پشتیبان حیات پایدار مبتنی بر گیاهان است.

کلیدواژه‌ها

موضوعات


[1] Wolff, S.A., Coelho, L.H., Karoliussen, I., and Jost, A.-I.K., “Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment”, Life, Vol. 4, No. 2, pp. 189-204, 2014.
[2] Cannon, A.E., Salmi, M.L., Clark, G., and Roux, S., “New Insights in Plant Biology Gained from Research in Space”, Gravitational and Space Research, Vol. 3, No. 2, pp. 189-204, 2015.
[3] Böhmer, M. and Schleiff, E., “Microgravity Research in Plants: a Range of Platforms and Options Allow Research on Plants in Zero or Low Gravity That Can Yield Important Insights into Plant Physiology”, EMBO Reports, Vol. 20, No. 7, p. e48541, 2019.
[4] Haeuplik-Meusburger, S., Paterson, C., Schubert, D., and Zabel, P., “Greenhouses and Their Humanizing Synergies”, Acta Astronautica, Vol. 96, pp.138-150, 2014.
[5] Poulet, L., Fontaine, J.-P., and Dussap, C.-G., “Plant’s Response to Space Environment: a Comprehensive Review Including Mechanistic Modelling for Future Space Gardeners”, Botany Letters, Vol. 163, No. 3, pp. 337-347, 2016.
[6] Porterfielda, D.M., Neichitailo, G.S., Mashinskic, A.L., and Musgraved, M.E.  “Spaceflight Hardware for Conducting Plant Growth Experiments in Space: The Early Years 1960–2000”, Advances in Space Research, Vol. 31, No. 3, pp. 183-193, 2003.
[7] Halstead, T.W., “Status and Prospects: Experiments on Plants in Space”, Ann. Bot., Vol. 54, No. 3, pp. 3-18, 1984.
[8] Dubinin, N.P., Vaulina, E.N., Kosikov, K.V., Anikeeva, I.D., Moskvitin, E.V., Zapadnaya, A.A., Kostina, L.N., Shtrauh, G.A., Kryzhanovskaya, L.M., Gubareva, I.G., Nechitailo, G.S., and Mashinsky, A.L., “Effects of Space Flight Factors on the Heredity of Higher and Lower Plants”, Life Sciences and Space Research, Vol. 11, pp. 105-113, 1973.
[9] Vaulina, E.N., Anikeeva, I.D., Kostina, L.N., Kogan, I.G., Palmbakh, L.R., and Mashinsky, A.L., “The Role of Weightlessness in the Genetic Damage from Preflight Gamma-Irradiation of Organisms in Experiments Aboard the Salyut 6 Orbital Station”, Advances in Space Research, Vol. 1, No. 14, pp. 163-169, 1981.
[10] Kordyum, E., Sytnik, K., and Chernyaeva, I., “Peculiarities of Genital Organ Formation in Arabidopsis Thaliana (L) Heynh. Under Spaceflight Conditions”, Advances in Space Research, Vol. 3, No. 9, pp. 247-250, 1983.
[11] Kostina, L., Anikeeva, I., and Vaulina, E., “The Influence of Space Flight Factors on Viability and Mutability of Plants”, Advances in Space Research, Vol. 4, No. 10, pp. 65-70, 1984.
[12] Summerlin, L.R., Skylab, Classroom in Space.  National Aeronautics and Space Administration, Huntsville, AL., George, C. Marshall Space Flight Center, 1977.
[13] Paul, A.-L., Wheeler, R.M., Levine, H.G., and Ferl, R.J., “Fundamental Plant Biology Enabled by the Space Shuttle”, American journal of botany, Vol. 100, No. 1, pp. 226-234, 2013.
[14] Kuang, A., Musgrave, M.E., and Matthews, S.W., “Modification of Reproductive Development in Arabidopsis Thaliana Under Spaceflight Conditions”, Planta, Vol. 198, No. 4, pp. 588-597, 1996.
[15] Musgrave, M.E., Kuang, A., and Matthews, S.W., “Plant Reproduction During Spaceflight: Importance of the Gaseous Environment”, Planta, Vol. 203, No. 1, pp. 177-184, 1997.
[16] Morrow, R.C., Bula, R.J., Tibbitts, T.W., Dinauer, W.R., “The ASTROCULTURETM Flight Experiment Series, Validating Technologies for Growing Plants in Space”, Advances in Space Research, Vol. 14, No. 11, pp. 29-37, 1997.
[17] Kuang, A., Xiao, Y., and Musgrave, M.E., “Cytochemical Localization of Reserves during Seed Development inArabidopsis thalianaunder Spaceflight Conditions”, Annals of Botany, Vol. 78, No. 3, pp. 343-351, 1996.
[18] Musgrave, M.E., Kuang, A., Brown, C., and Matthews, S.W., “Changes in Arabidopsis Leaf Ultrastructure, Chlorophyll and Carbohydrate Content during Spaceflight Depend on Ventilation”, Annals of Botany, Vol. 81, No. 4, pp. 503-512, 1998.
[19] Porterfield, D.M., Barta, D.J., Ming, D.W., Morrow, R.C., and Musgrave, M.E., “ASTROCULTURE™ Root Metabolism and Cytochemical Analysis”, Advances in Space Research, Vol. 26, No. 2, 315-318, 2000.
[20] Brinckmann, E., “ESA Hardware for Plant Research on the International Space Station”, Advances in Space Research, Vol. 36, No. 7, 1162-1166, 2005.
[21] Driss-Ecole, D., Legué, V., Carnero-Díaz, E., and Perbal, G., “Gravisensitivity and Automorphogenesis of Lentil Seedling Roots Grown on Board the International Space Station”, Physiologia Plantarum, Vol. 134, No. 1, 191-201, 2008.
[22] Johnsson, A., Solheim, B., and Iversen, T.H., “Gravity Amplifies and Microgravity Decreases Circumnutations in Arabidopsis Thaliana Stems: Results from a Space Experiment”, New Phytologist, Vol. 182, No. 3, pp. 621-629, 2009.
[23] Millar, K.D., Kumar, P., Correll, M.J., Mullen, J.L., Hangarter, R.P., Edelmann, R.E., and Kiss J.Z., “A Novel Phototropic Response to Red Light Is Revealed in Microgravity”, New Phytologist, Vol. 186, No. 3, pp. 648-656, 2010.
[24] Kittang, A.-I., Iversen, T.-H., Fossum, K.R., Mazars, C., Carnero-Diaz, E., Boucheron-Dubuisson, E., Le Disquet, I., Legué, V., Herranz, R., Pereda-Loth, V., and Medina, F.J., “Exploration of Plant Growth and Development Using the European Modular Cultivation System Facility on the International Space Station”, Plant Biology, Vol. 16, No. 3, pp. 528-538, 2014.
[25] Paul, A.-L. and Ferl, R.J., “Spaceflight Exploration in Plant Gravitational Biology”, Plant Gravitropism, Vol. 68, pp. 285-305, 2015.
[26] Paul, A.-L., Zupanska, A.K., Schultz, E.R., and Ferl, R.J., “Organ-Specific Remodeling of the Arabidopsis Transcriptome in Response to Spaceflight”, BMC Plant Biology, Vol. 13, No. 1, pp. 112-120, 2013.
[28] Kwon, T., Sparks, J.A., Nakashima, J., Allen, S., Tang, Y., and Blancaflor, E., “Transcriptional Response of Arabidopsis Seedlings During Spaceflight Reveals Peroxidase and Cell Wall Remodeling Genes Associated with Root Hair Development”, American Journal of Botany, Vol. 102, No. 1, pp. 21-35, 2015.
[29] Ferl, R.J., Koh, J., Denison, F., and Paul1, A.-L., “Spaceflight Induces Specific Alterations in the Proteomes of Arabidopsis”, Astrobiology, Vol. 15, No. 1, pp. 32-56, 2015.
[30] Schultz, E.R., Kelley, K.L., Paul1, A.-L., and Ferl, R.J., “A Method for Preparing Spaceflight RNAalater‐fixed Arabidopsis Thaliana (Brassicaceae) Tissue for Scanning Electron Microscopy”, Applications in Plant Sciences, Vol. 1, No. 8, P. 1330004, 2013.
[31] Ferl, R.J., Koh, J., Denison, F., and Paul1, A.-L., “The Performance of Ksc Fixation Tubes with Rnalater for Orbital Experiments: a Case Study in Iss Operations for Molecular Biology”, Advances in Space Research, Vol. 48, No. 1, pp. 199-206, 2011.
[32] Levine, H.G., Richards, J.T., and Koss, L.L., “Early Prototype Development of the Passive Orbital Nutrient Delivery System (PONDS)”, American Society for Gravitational and Space Research (ASGSR) Meeting, Denver, CO, USA, 2019.
[34] Basua, P., Kruse, C.P.S., Luesse, D.R., Wyattab, S.E., “Growth in Spaceflight Hardware Results in Alterations to the Transcriptome and Proteome”, Life Sciences in Space Research, Vol. 15, pp. 88-96, 2017.