نقش تراسترها در سامانه‌های فضایی

نوع مقاله : علمی- ترویجی

نویسندگان

1 دانشگاه جامع امام حسین(ع)، دانشکده فنی و مهندسی، گروه مهندسی شیمی

2 دانشگاه‌ جامع امام حسین(ع)، دانشکده فنی و مهندسی، گروه مهندسی شیمی

چکیده

فضاپیماها، مانند راکت‌ها، ماهواره‌ها و کاوشگرهای فضایی، راکت‌های کوچکی برای کنترل مانورها و زاویة دید به نام تراسترها دارند. ‌‌این تراسترها با خروج گاز از نازل خود نیرو (تراست) ایجاد می‌کنند. ‌‌کاهش مصرف پیشرانه، بهبود عملکرد، جابجایی ایمن و هزینه کم ملزومات تراسترهایی می‌باشد که برای مانور و کنترل زاویة دید ماهواره‌ها استفاده می‌شود. ‌‌به همین دلیل، سامانه‌های کنترل واکنشی به سمت استفاده از پیشرانه‌های جدید (پیشرانه‌های سبز) به‌جای پیشرانه‌های سمی حرکت می‌کند. ‌‌انواع مختلفی از پیشرانه‌های سبز تولید شده‌ که به دلایلی مانند قابلیت انبارداری پایین، ایمپالس ویژة کم و چگالی کم مورد استفاده قرار نگرفته‌اند. ‌‌هیدروژن پراکساید، نیتروز اکساید، هیدروکسیل آمونیوم نیترات، هیدرازینیوم نیتروفرمات و آمونیوم دی‌نیترامید پیشرانه‌های سبزی هستند که مورد تأیید بسیاری از ارگان‌ها قرار گرفته و از آن‌ها در تراسترهای فضایی استفاده شده است. ‌‌این مقاله با معرفی اجمالی انواع تراسترها، پیشرانه‌های سبز استفاد شده را مقایسه نموده، بهترین گزینه را پیشنهاد می‌کند. 

کلیدواژه‌ها


[1]      Ipek, F.‌‌K.‌‌, “Design, Control, and Guidance of a Tactical Missile with Lateral Thrusters”, M.Sc. ‌‌Thesis, The Graduate School of Natural and Applied Sciences, Middle East Technical University, 2015. ‌‌
[2]      Tanaka, N. ‌‌, “The “Greening” of Spacecraft Reaction Control Systems”, Mitsubishi Heavy Industries Technical Review, Vol. ‌‌48, No. ‌‌4, pp. ‌‌44-50, 2011. ‌‌
[3]      Sutton, G.P., “History of Liquid Propellant Rocket Engines”, AIAA Conference, Virginia, USA, 2006. ‌‌
[4]      Tummala, A.‌‌R. ‌‌and Dutta, A. ‌‌, “An Overview of Cub-Satellite Propulsion Technologies and Trends”, Aerospace, Vol. ‌‌4, No. ‌‌58, 2017. ‌‌
[5]      Frisbee, R.‌‌H. ‌‌, “Advanced Space Propulsion for the 21st Century”, J. ‌‌Propul. ‌‌Power. ‌‌, Vol. ‌‌19, No. ‌‌6, pp. ‌‌1129-1156, 2003. ‌‌
[6]      Robin, M., Brogan, TH.‌‌R.‌‌, and Cardiff, E., “An Ammonia Micro Resisto Jet (MRJ) for Micro Satellites”, The 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hatford, USA, 2008. ‌‌
[7]      Sanchez, M.‌‌M. ‌‌, “Spacecraft Electric Propulsion—an Overview”, J. ‌‌Propul. ‌‌Power, Vol. ‌‌14, No. ‌‌5, pp. ‌‌688-699, 1998. ‌‌
[8]      Chianese, S.G. ‌‌and Micci, M.‌‌M.‌‌, “Microwave Electro-thermal Thruster Chamber Temperature Measurements and Performance Calculations”, J. ‌‌Propul. ‌‌Power. ‌‌, Vol. ‌‌22, No. ‌‌1, pp. ‌‌31-37, 2006. ‌‌
[9]      Lee, R.H. ‌‌, Bauer, A.‌‌M. ‌‌, Killingsworth, M.D., Lilly, T.C.‌‌, and Duncan, J.‌‌A., “Free-Molecule-Microresistojet Performance, Using Water Propellant for Nanosatellite Applications”, J. ‌‌Spacecraft. ‌‌Rockets. ‌‌, Vol. ‌‌45, No. ‌‌2, pp. ‌‌264-269, 2008. ‌‌
[10]   Ahmed, Z. ‌‌and Gimelshein, S.F., “Numerical Analysis of Free-molecule Microresistojet Performance”, J. ‌‌Propul. ‌‌Power, Vol. ‌‌22, No. ‌‌4, pp. ‌‌749-756, 2006. ‌‌
[11]   Wollenhaupt, B.‌‌, Le, Q.‌‌H.‌‌, and Herdrich, G., “Overview of Thermal Arcjet Thruster Development”, Aircraft Engineering and Aerospace Technology, Vol. ‌‌90, No. ‌‌2, pp. 208-301, 2018. ‌‌
[12]   Gao, Y.‌‌, Ma, Y.F. ‌‌, and Liu J.T. ‌‌, “A Review of the Vaporizing Liquid Microthruster Technology”, The 6th International Symposium on Fluid Machinery and Fluid Engineering, Wuhan, China, 2014. ‌‌
[13]   Carroll, D.L., “Propulsion Unit for Cubesats (PUC)”, The 62nd JANNAF Propulsion Meeting (7th Spacecraft Ppropulsion), Nashville, USA, 2015. ‌‌
[14]   Fearn, D.G. ‌‌, “The Future Development of Gridded Ion Engines”, The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, USA, 2003. ‌‌
[15]   Kolasinski, R.‌‌D. ‌‌and Polk, J.‌‌E.‌‌, “Characterization of Cathode Keeper Wear by Surface Layer Activation”, J. ‌‌Propul. ‌‌Power‌‌, Vol. 20, No. 6, 992-999, 2004. ‌‌
[16]   Wilbur, P.‌‌J., Wilson, M., Hutchings, K.‌‌, and Williams, J., “Emissive Membrane Ion Thruster Concept”, J. ‌‌Propul. ‌‌Power, Vol. ‌‌23, No. ‌‌5, pp. ‌‌1049-1054, 2007. ‌‌
[17]   Hall, E.‌‌H.‌‌, “Hall, on a New Action of the Magnet on Electric Currents”, Amer. ‌‌J. ‌‌Math., Vol. ‌‌2, No. ‌‌3, pp. ‌‌287-293, 2011. ‌‌
[18]   Mikellides, I., Katz, I., Hofer, R.‌‌R, and Goebel, D.‌M.‌‌, “Magnetic Shielding of a Laboratory Hall Thruster, ‌‌Theory and Validation”, J. ‌‌Appl. ‌‌Phys., Vol. ‌‌115, pp. ‌‌1-20, 2014. ‌‌
[19]   Biagioni, L., Saverdi, M., and Andrenucci, M., “Scaling and Performance Prediction of Hall Effect Thrusters”, The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, USA, 2003. ‌‌
[20]   Dannenmayer, K. ‌‌and Mazouffre, S.‌‌, “Elementary Scaling Relations for Hall Effect Thrusters”, J. ‌‌Propul. ‌‌Power‌‌, Vol. ‌‌27, No. ‌‌1, pp. ‌‌236-245, 2011. ‌‌
[21]   Gutierrez, E.‌‌G. ‌‌and Castaño M.‌G.‌‌, “Microfabrication of an Electrospray Thrusters for Small Spacecrafts”, PMEMS, Vol. ‌‌2, No. ‌‌5, pp. ‌‌528-531, 2012. ‌‌
[22]   Krejci, D. ‌‌and Schouten, A.‌‌H. ‌‌, “Design and Characterization of a Scalable Ion Electrospray Propulsion System”, IEPC, 2015. ‌‌
[23]   Burton, R.L. ‌‌and Turchi, P.‌‌J. ‌‌, “Pulsed Plasma Thruster”, J. ‌‌Propul. ‌‌Power‌‌, Vol. ‌‌14, No. ‌‌5, pp. ‌‌716-735, 1998. ‌‌
[24]   Brito, C.M., Elaskar, S.‌‌A.‌‌, Brito, H.‌‌H.‌‌, and Paoletti, N.‌‌R.‌‌, “Zero-dimensional Model for Preliminary Design of Ablative Pulsed Plasma Teflon Thrusters”, J. ‌‌Propul. ‌‌Power, Vol. ‌‌20, No. ‌‌6, pp. ‌‌970-977, 2004. ‌‌
[25]   Koroteev, A.S. ‌‌and Oshev, Y.U.A., “Nuclear Power Propulsion System for Spacecraft”, Thermal Engineering, Vol. ‌‌62, No. ‌‌13, pp. ‌‌971-980, 2015. ‌‌
[26]   Heaton, A.F. ‌‌, “Solar Sail GN&C Model Comparisons”, The AIAA Guidance, Navigation,and Control Conference and Exhibit, Providence, Rhode Island, 2004. ‌‌
[27]    Tanaka, B. ‌‌and Hosokawa, R. ‌‌, “Mems-Based Solid Propellant Rocket Array Thruster with Electrical Feedthroughs”, Trans. ‌‌Japan SOC. ‌‌Aero. space SCI. ‌‌, Vol. ‌‌46, No. ‌‌151, pp. ‌‌47-51, 2003. ‌‌
[28]   Larangot, B. ‌‌, Conédéra, V. ‌‌, Dubreuil, P. ‌‌, Conto, T. ‌‌, and Rossi, C. ‌‌, “Solid Propellant Microthruster: an Alternative Propulsion Device for Nanosatellite”, Aerospace Energetic Equiepment Conference, 2003. ‌‌
[29]   Ariane Group, Bipropellant Thrusters.‌‌, http://www. ‌‌space-propulsion.com/spacecraft-propulsion/bipropellant-thrusters/200n-bipropellant-thrusters. ‌‌html. ‌‌
[30]   Amrousse, R.‌‌, Hori, K.‌‌, Fetimi, W.‌‌, and Farhat, K.‌‌, “HAN and ADN as Liquid Ionic Monopropellants Thermal and Catalytic Decomposition Processes”, Applied Catalysis B: Environmental, Vol. ‌‌127, pp. ‌‌121-128, 2012. ‌‌
[31]   Negri, M. ‌‌, “Replacement of Hydrazine: Overview and First Results of the h2020 Project Rheform”, The 6th EUCASS, Krakow, Poland, 2015. ‌‌
[32]   Bramanti, C., Musker, A.‌‌, and Saccoccia, G.‌‌, “Experimental Characterization of Advanced Materials for the Catalytic Decomposition of Hydrogen Peroxide”, The 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, USA, 2006. ‌‌
[33]   Cervone, A. ‌‌and Torre, L. ‌‌, “Development of Hydrogen Peroxide Monopropellant Rockets”, 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, USA, 2006. ‌‌
[34]   Pasini, A.‌‌, and Torre, L.‌‌, “Experimental Characterization of a 5 N Hydrogen Peroxide Monopropellant Thruster Prototype”, The 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, USA, 2007. ‌‌
[35]   Palmer, M.‌‌I. ‌‌and Roberts G.‌‌T.‌‌, “Design, Build and Test of a 20n Hydrogen Peroxide Monopropellant Thruster”, The 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sandiego, Colifornia, USA, 2007. ‌‌
[36]   Wallbank, J.‌‌R. ‌‌and Sermon P.‌‌A. ‌‌, “Nitrous Oxide as a Green Monopropellant for Small Satellites”, The 2th Int. ‌‌Conference on Green Propellants for Space Propulsion, Noordwijk, Netherlands, 2004. ‌‌
[37]   Zakirov, V. ‌‌and Sweeting, M. ‌‌, “Nitrous Oxide as a Rocket Propellant” Acia Astronaut. ‌‌, Vol. ‌‌48, No. ‌‌5, pp. ‌‌353-362, 2001. ‌‌
[38]   Zakirov, V. ‌‌and Luming, L.‌‌, “Propulsion Challenges for Small Spacecraft: 2005”, Acta. ‌‌Astronaut., Vol. ‌‌11, No. ‌‌5, pp. ‌‌353-362, 2006. ‌‌
[39]   Katsumi, T. ‌‌and Nakatsuka, I., “HAN-based Green Propellant, Application, and its Combustion Mechanism”, Combust. ‌‌Explos. ‌‌Shock Waves, Vol. ‌‌48, No. ‌‌5, pp. ‌‌536-543, 2012. ‌‌
[40]   Silva, G.‌‌, Rufino, S., and Iha, K., “Green Propellants: Oxidizers”, J. ‌‌Aerosp. ‌‌Tech. ‌‌Manage. ‌‌, Vol. ‌‌5, No. ‌‌2, pp. ‌‌139-144, 2013. ‌‌
[41]   Van Der Heijden, A. ‌‌and Veltmans, W.‌‌, “HNF: Oxidiser for High Performance, Low-Signature Propellants”,  Aerospace Propulsion Products, Vol. ‌‌23, No. ‌‌26, 2002. ‌‌
[42]   Larsson, A. ‌‌and Wingborg, N., “Green Propellants Based on Ammonium Dinitramide (ADN)”, FOI–Swedish Defence Research Agency, 2013. ‌‌
[43]   Anflo, K. ‌‌and Gronland, A.‌‌, “Development and Testing of ADN-based Monopropellants in Small Rocket Engines”, The 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Las Vegas , USA, 2000. ‌‌