ارزیابی عملکرد یک موتور توربوجت با تحلیل اگزرژی اجزای آن

نوع مقاله : علمی- ترویجی

نویسنده

گروه هوافضا، دانشکده انرژی های تجدیدپذیر، دانشگاه صنعتی ارومیه

چکیده

در این تحقیق عملکرد موتور توربوجت J85-GE21 با تحلیل اگزرژی اجزای تشکیل‌دهندة آن مورد ارزیابی قرار گرفته است. با استفاده از روابط تعادل اگزرژی، عملکرد موتور توربوجت و اجزای آن برای بارگذاری‌های توانی مختلف در دو ارتفاع سطح دریا و 000,11 متری و در چندین سرعت پروازی بررسی شده است. بالاترین بازدة اگزرژی در سطح دریا مربوط به کمپرسور با 72/96% بوده و پس از آن نازل و توربین به ترتیب با 70/93% و 31/92% قرار دارند. با کاهش سرعت هوای ورودی به موتور در هر ارتفاعی، بازده تمامی اجزاء موتور و بازده کلی کاهش یافت. کمترین بازدة اگزرژی در سطح دریا مربوط به پس‌سوز با 81/54% و پس از آن محفظة احتراق با 42/80% بود. افزایش ارتفاع باعث کاهش 70% اتلاف اگزرژی موتور می‌شود. بازده کلی موتور با فرض ثابت بودن فشار هوا با افزایش درجه حرارت هوای ورودی به ازای هر یک درجه افزایش درجه حرارت، 45/0% کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


[1] Sehra, A.K. and Whitlow, J.W., “Propulsion and Power for 21st Century Aviation”, Progress in Aerospace Sciences, Vol. 40, pp. 199–235, 2004.
[2] Yılmaz, I., M. Ilbas, Tastan, M., and Tarhan, C., “Investigation of Hydrogen Usage in Aviation Industry”, Energy Convers Manage, Vol. 63, pp. 63–69, 2012.
[3] Lee, J., “Can We Accelerate the Improvement of Energy Efficiency in Aircraft Systems?”, Energy Conversion and Management, Vol. 51, No. 1, pp. 189–196, 2010.
[4] Ozturk, M., Ozek, N., and Yuksel, Y.E., “Gasification of Various Types of Tertiary Coals: A Sustainability Approach”, Energy Conversion and Management, Vol. 56, pp. 157–165, 2012.
[5] Rosen, M.A., “Assessing, Energy Technologies and Environmental Impacts with the Principles of Thermodynamics”, Applied Energy, Vol. 72, No. 1, pp. 427–441, 2002.
[6] Rosen, M.A. and Dincer, I., “Exergoeconomic Analysis of Power Plants Operating on Various Fuels”, Applied Thermal Engineering, Vol. 23, pp. 643–658, 2003.
[7] Etele, J. and Rosen, M.A., “Sensitivity of Exergy Efficiencies of Aerospace Engines to Reference Environment Selection”, Exergy, An International Journal, Vol. 1, No. 2, pp. 91–99, 2001.
[8] Turgut, E.T., Karakoc, T.H. and Hepbasli, A., “Exergetic Analysis of an Aircraft Turbofan Engine”, International Journal of Energy Research, Vol. 31, No. 14, pp. 1383–1397, 2007.
[9] Turan, O., “Effect of Reference Altitudes for a Turbofan Engine with the Aid of Specific-Exergy Based Method”, International Journal of Exergy, Vol. 11, No. 2, pp. 252–270, 2012.
[10] Ahmadi, P. and Dincer, I., “Thermodynamic Analysis and Thermoeconomic Optimization of a Dual Pressure Combined Cycle Power Plant with a Supplementary Firing Unit”, Energy Conversion and Management, Vol. 52, pp. 2296–2308, 2011.
[11] Balli, O., Aras, H., Aras, N., and Hepbasli, A., “Exergetic and Exergoeconomic Analysis of an Aircraft Jet Engine (AJE)”, International Journal of Exergy, Vol. 5, No. 5/6, pp. 567–81, 2008.
[12] Turgut, E.T., Karakoc, T.H., and Hepbasli, A., “Exergoeconomic Analysis of an Aircraft Turbofan Engine”, International Journal of Exergy, Vol. 6, No. 3, pp. 277–94, 2009.
[13] Aydin, H., Turan, O., Midilli, A., and Karakoc, T. H., “Exergetic and Exergo-Economic Analysis of a Turboprop Engine: A Case Study for CT7-9C”, International Journal of Exergy, Vol. 11, No. 1, pp. 69–82, 2012.
[14] Mobini, K., Mehrpanahi, K., and Hosseinalipour, S.M., “Thermo-economic Analysis of the Existing Options for Feed Water Heating Repowering, Using a Stepwise Method”, Aerospace Mechanics Journal, Vol. 8, No. 2, 2012.
[15] Meyer, L., Tsatsaronis, G., Buchgeister, J., and Schebek, L., “Exergoenvironmental Analysis for Evaluation of the Environmental Impact of Energy Conversion Systems”, Energy, Vol. 34, No. 1, pp. 75–89, 2009.
[16] Altuntas, O., Karakoc, T.H., and Hepbasli, A., “Exergoenvironmental Analysis of Pistonprop Aircrafts”, International Journal of Exergy, Vol. 10, No. 3, pp. 290–298, 2012. 
[17] Bejan, A. and Siems, D., “The Need for Exergy Analysis and Thermodynamic Optimization in Aircraft Development”, Exergy, An International Journal, Vol. 1, No. 1, pp. 14–24, 2001.
[18] Balli, O., “Performance Assessment of a Medium-Scale Turboprop Engine Designed for Unmanned Aerial Vehicle (UAV) Based on Exergetic and Sustainability Metrics”, Journal of Thermal Science and Engineering, Vol. 6, No. 5, pp.  697-711, 2019.
[19] Sohret, Y., “A Comprehensive Approach to Understanding Irreversibility in a Turbojet”, Journal of Propulsion and Power Research, Vol. 7, No. 2, pp. 129–137, 2018.
[20] Dincer, I. and Cengel, Y.A., “Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering, Entropy”, Vol. 3, 2001, pp. 116–149.
[21] Balli, O., Aras, H., and Hepbasli, A., “Thermodynamic and Thermoeconomic Analyses of a Trigeneration (TRIGEN) System with a Gas–Diesel Engine: Part I-Metdodology”, Energy Conversion and Management, Vol. 51, pp. 2252–2259, 2010.
[22] Mansouri, M.T., Ahmadi, P., Kaviri, A.G. and Jaafar, M.N.M., “Exergetic and Economic Evaluation of the Effect of HRSG Configurations on the Performance of Combined Cycle Power Plants”, Energy Conversion and Management, Vol. 58, pp. 47–58, 2012.
[23] Silveira, J. L., Beyene, A., Leal, E. M., Santana, J.A., and Okada, D., “Thermoeconomic Analysis of a Cogeneration System of a University Campus”, Applied Thermal Engineering, Vol. 22, pp. 1471–1483, 2002.
[24] Balli, O., Sohret, Y., and Karakoc, H.T., “The Effects of Hydrogen Fuel Usage on the Exergetic Performance of a Turbojet Engine”, International Journal of Hydrogen Energy, Vol. 43, No. 23, pp. 10848-10858, 2018.
[25] Aliehyaei, M., Anjiridezfuli, A., Rosen, M. A., “Exergetic Analysis of an Aircraft Turbojet Engine with an Afterburner”, Thermal Science, Vol. 17, No. 4, pp. 1181-1194, 2013.