[1] Zarchan, P., Tactical and Strategic Missile Guidance, American Institute of Aeronautics and Astronautics, Reston, USA, 2012.
[2] Siouris, G.M.
Missile Guidance and Control Systems, Springer Science & Business Media,
Berlin,
Germany, 2004.
[3] Yanushevsky, R. and Boord, W., "Lyapunov Approach to Guidance Laws Design", Non-linear Analysis: Theory, Methods & Applications, Vol. 63, No's. 5-7, pp. 743-749, 2005.
[4] Saleem, A. and Ratnoo. A., "Lyapunov-based Guidance Law for Impact Ttime Control and Simultaneous Arrival", Journal of Guidance, Control, and Dynamics, Vol. 39, No. 1, pp. 164-173, 2016.
[5] Shima, T., Idan, M., and Golan, O.M., "Sliding-mode Control for Integrated Missile Autopilot Guidance", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, pp. 250-260, 2006.
[6] Moosapour, S.H., Bagherzadeh, M., Alizadeh, G., and Ghaemi, S., ''Back-stepping Guidance Law Design for Missile Against Maneuvering Targets", International Conference on Control, Instrumentation and Automation, Shiraz, Iran, 2011.
[7] Behnamgol, V., Vali, A., and Mohammadi, A., "A New Back-stepping Sliding Mode Guidance Law Considering Control Loop Dynamics", Journal of Space Science and Technology,Vol. 89, No. 4, pp. 9-16, 2016.
[8] Gutman, S., "On Optimal Guidance for Homing Missiles", Journal of Guidance and Control, Vol. 2, No. 4, pp. 296-300, 1979.
[9] Yang, C.-D. and Chen, H.-Y., "Non-linear H Robust Guidance Law for Homing Missiles", Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, pp. 882-890, 1998.
[10] Zhou, D., Sun, S., and Teo, K.L., "Guidance Laws with Finite Time Convergence", Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, pp. 1838-1846, 2009.
[11] Behnam Gol, V., Zaman, I.M., Vali, A.R., and Ghahramani, N.A., "Guidance Law Design, Using Finite Time Second Order Sliding Mode Control", Journal of Control, Vol. 5, No. 3, pp. 36-44, 2011.
[12] Dimirovski, G.M., Deskovski, S.M., and Gacovski, Z.M., "Classical and Fuzzy-system Guidance Laws in Homing Missiles Systems", IEEE Aerospace Conference Proceedings, Vol. 5, pp. 3032-3047, 2004.
[13] Lin, C.-M. and Hsu, C.-F. "Guidance Law Design by Adaptive Fuzzy Sliding-mode Control", Journal of Guidance, Control, and Dynamics, Vol. 25, No. 2, pp. 248-256, 2002.
[14] Breivik, M., and Fossen, T.I. "Principles of Guidance-based Path Following in 2D and 3D", The 44th IEEE Conference on Decision and Control, Seville, Spain, 2005.
[15] Palumbo, N.F., Blauwkamp, R.A., and Lloyd, J.M., "Basic Principles of Homing Guidance", Johns Hopkins APL Technical Digest, Vol. 29, No. 1, pp. 25-41, 2010.
[16] Ghaffari, V., "Guidance Algorithm Selection Based on Line-of-sight Angleinguidance Systems", High Speed Craft, Vol. 16, No. 61, pp.50-57, 2018.
[17] Cho, N. and Kim, Y., "Modified Pure Proportional Navigation Guidance Law for Impact Time Control", Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, pp. 852-872, 2016.
[18] Jeon, In-Soo, and Jin-Ik Lee. "Impact-time-control Guidance Law with Constraints on Seeker Look Angle", IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 5, pp. 2621-2627, 2017.
[19] Song, J., Song, S., and Xu, S., "Three-dimensional Cooperative Guidance Law for Multiple Missiles with Finite-time Convergence", Aerospace Science and Technology, Vol. 67, 193-205, 2017.
[20] Song, J., and Song. S.,"Three-dimensional Guidance Law Based on Adaptive Integral Sliding Mode Control", Chinese Journal of Aeronautics, Vol. 29, No. 1, pp. 202-214, 2016.