[1] Baldwin, K.L., Strohm, A.K., and Masson, P.H., “Gravity Sensing and Signal Transduction in Vascular Plant Primary Roots”, American Journal of Botany, Vol. 100, pp. 126-42, 2013..
[2] Musgrave, M.E., Kuang, A., Xiao, Y., Stout, S.C., Bringham, G.E., Briarty, L.G., Levenskikh, M.A., Sychev, V.N., and Podolski, I.G., “Gravity Independence of Seed-to-Seed Cycling in Brassica Rapa”, Planta, Vol. 210, No. 3, pp. 400–406, 2000.
[3] Yano, S., Kasahara, H., Masuda, D., Tanigaki, F., Shimazu, T., Suzuki, H., Karahara, I., Soga, K., Hoson, T., Tayama, I., Tsuchiya, Y., and Kamisaka, S., “Improvements in and Actual Performance of the Plant Experiment Unit onboard Kibo, the Japanese Experiment Module on the International Space Station”, Advance Space Research, Vol. 51, No. 5, pp. 780–788, 2013.
[4] Bingham, G.E., Levinskikh, M.A., Sytchev, V.N., and Podolsky, I.G., “Effects of Gravity on Plant Growth”, Journal of Gravitational Physiology , Vol. 7, No. 2, pp. 5–8, 2000.
[5] Sychev, V.N., Levinskikh, M.A., Gostimsky, S.A., Bingham, G.E., and Podolsky, I.G., “Space Flight Effects on Consecutive Generations of Peas Grown Onboard the Russian Segment of the International Space Station”, ActaAstronautica, Vol. 60, pp. 426–432, 2007.
[6] Sieberer, B.J., Kieft, H., Franssen-Verheijen, T., Emons, A.M., and Vos, J.W., “Cell Proliferation, Cell Shape, and Microtubule and Cellulose Microfibril Organization of Tobacco BY-2 Cells Are Not Altered by Exposure to Near Weightlessness in Space”, Planta, Vol. 230, No. 6, pp. 1129–1140, 2009.
[7] Claasen, D.E. and Spooner, B.S., “Impact of Altered Gravity on Aspects of Cell Biology”, International Review Cytology, Vol. 156, pp. 301–373, 1994.
[8] Zhang, Y., Wang, L., Xie, J., and Zheng, H., “Differential Protein Expression Profiling of Arabidopsis Thaliana Callus under Microgravity on Board the Chinese SZ-8 Spacecraft”, Planta, Vol. 241, No. 2, pp. 475–488, 2015.
[9] Sáez-Vásquez, J., Caparros-Ruiz, D., Barneche, F., and Echeverría, M., “A Plant SnoRNP Complex Containing SnoRNAs, Fibrillarin, and Nucleolin-like Proteins is Competent For both rRNA Gene Binding and Pre-rRNA Processing in Vitro”, Molecular and Cellular Biology, Vol. 24, pp. 7284-97, 2004.
[10] Boucheron-Dubuisson, E., Manzano, A.I., Disquet I.L., Matía, I., SáezVasquez, J., van Loon, J.J.W.A., Herranz, R., Carnero-Diaz, E.F., and Medina, J., “Functional Alterations of Root Meristematic Cells of Arabidopsis Thaliana Induced by a Simulated Microgravity Environment”, Journal of Plant Physiology,Vol. 1, pp. 30-41, 2016.
[11] Matia, I., Gonzallez-Camacho, F., and Herranz, R. “Plant Cell Proliferation and Growth are Altered by Microgravity Conditions in Spaceflight”, Journal of Plant Physiology, Vol. 167, pp. 184–193, 2010.
[12] Shen-Miller, J. and Hinchman, R.R. “Nucleolar Transformation in Plants Grown on Clinostats”, Protoplasma, Vol. 185, pp. 194-204, 1995.
[13] Baserga, R. “Is Cell Size Important?”, Cell Cycle, Vol. 6, pp. 814-6, 2007.
[14] Artemenko, O.A., “Expression of d1- and d3- Cyclins in Root Meristem Cells of Pisum Sativum L. by Clinorotation”, Journal of Gravitational Physiology, Vol. 12, pp. 201–202, 2005.
[15] Sytnik, K.M., Kordyum, V.A., Kordyum, E.L., Grabskyy, V.G., Manko, V.G., Nedukha, O.M., and Popova, A.F., Microorganisms in Space Flight, Naukova Dumka, Kyiv , Ukraine, 1983.
[16] Polulyakh, Yu.A., Zhadko, S.I., and Klimchuk, D.A., “Plant Cell Plasma Membrane Structure and Properties under Clinostating”, Advance Space Research, Vol. 9, pp. 71–74, 1989.
[17] Goldermann, M. and Hanke, W., “Ion Channel Are Sensitive to Gravity Changes”, Microgravity Science Technology, Vol. 13, No. 1, pp. 35–38, 2001.
[18] Kordyum, E. L., Nedukha, O. M., Grakhov, V. P., Vorobyova, T.V., Klymenko, O.M., and Zhupanov, I.V., “Study of the Influence of Simulated Microgravity on the Cytoplasmic Membrane Lipid Bilayer of Plant Cells”, Kosmichna Nauka Technologia, Vol. 21, No. 3, pp. 40–47 , 2015.
[19] Mongrand, S., Morel, J., Laroche, J., Claverol., S., Carde, J.P., Hartmann, M.A., Bonneu, M., Simon- Plas, F., Lessire, R., and Bessoule, J.J., “Lipid Rafts in Higher Plant Cells: Purification and Characterization of Triton X-100-insoluble Microdomains from Tobacco Plasma Membrane”, Journal of Biological Chemistry, Vol. 279, No. 35, pp. 36277–36286, 2004.
[20] Borner, G.H.H., Sherrier, D.J., Weimar, T., Michaelson, L.V., Hawkins, N.D., MacAskill, A., Napier, J.A., Beale, M.H., Lilley, K.S., and Dupree, P., “Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for plasma Membrane Lipid Rafts”, Plant Physiology, Vol. 137, No. 1, pp. 104–116, 2005.
[21] Kraft, M. L., “Plasma Membrane Organization and Function: Moving Past Lipid Rafts”, Molecular Biology of the Cell, Vol. 24, No. 18, pp. 2765–2768, 2013.
[22] Demir, F., Horntrich, C., Blachutzik, J.O., Scherzer, S., Reinders, Y., Kierszniowska, S., Schulze, W. X., Harms, G.S., Hedrich, R., Geiger, D., and Kreuzer, I., “Arabidopsis Nanodomain-Delimited ABA Signaling Pathway Regulates the Anion Channel SLAH3”, Proceeding of the National Academic of Science, Vol. 110, No. 20, pp. 8296–8301, 2013.
[23] Seifert, G.J., Xue, H. and Acet, T., “The Arabidopsis Thaliana Fasciclin-Like Arabinogalactan Protein 4 Gene Acts Synergistically with Abscisic Acidsignalling to Control Root Growth”, Annals Botany, Vol. 114, No. 6, pp. 1125–1133, 2014.
[24] Lingwood, D. and Simons, K., “Lipid Rafts as a Membrane Organizing Principle”, Science, Vol. 327, No. 5961, pp. 46–50, 2010.
[25] Mazars, C., Brie’re, C., Grat, S., Pichereaux, C., Rossignol., M., Pereda-Loth, V., Eche, B., Boucheron- Dubuisson, E., Le Disquet, I., Medina, F.J., Graziana, A., and Carnero-Diaz, E., “Microgravity Induces Changes In Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station”, PLoS One, Vol. 9, No. 3, pp. 1–18, 2014.
[26] Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., and Kiss, J.Z., “Transcriptome Analyses of Arabidopsis Thaliana Seedlings Grown in Space: Implications for Gravity-Responsive Genes”, Planta, Vol. 238, No. 3, pp. 519–533, 2013.
[27] Paul, A.L., Manak, M.S., Mayfield, J.D., Reyes, M.F., Gurley, W.B., and Ferl, R.J., “Parabolic Flight Induces Changes in Gene Expression Patterns in Arabidopsis Thaliana”, Astrobiology, Vol. 11, No. 8, pp. 743–758, 2011.
[28] Aubry-Hivet, D., Nziengui, H., Rapp, K., Oliveira, O., Paponov, I.A., Li, Y., Hauslage, J., Vagt, N., Braun, M., Ditengou, F.A., Dovzhenko, A., and Palme, K., “Analysis of Gene Expression During Parabolic Flights Reveals Distinct Early Gravity Responses in Arabidopsis Roots”, Plant Biology (Stuttg.), Vol. 16, No. 1, pp. 129–141, 2014.
[29] Zupanska, A. K., Denison, F.C., Ferl, R.J. and Paul, A.L., “Spaceflight Engages Heat Shock Protein and Other Molecular Chaperone Genes in Tissue Culture Cells of Arabidopsis Thaliana”, American Journal of Botany, Vol. 100, No. 1, pp. 235–2482013,.
[30] Ferl, R.J., Koh, J., Denison, F., and Paul, A.L., “Spaceflight Induces Specific Alterations In the Proteomes of Arabidopsis”, Astrobiology, Vol. 15, No. 1, pp. 32–56, 2015.
[31] Keegstra, K., “Plant cell walls”, Plant Physiology, Vol. 154, No. 2, pp. 483–486, 2010.
[32] Cowles, J.R., Scheld, H.W., Lemay, R., and Petersen, C., “Growth and Lignification in Seedlings Exposed to Eight Days of Microgravity”, Annals of Botany, Vol. 54, No. pp. 33–48, 1984.
[33] Levine, L.H., Heyeng, A.G., Levine, H.G., Choi, J.W., Davin, L.B., Krikorian, A.D. and Lewis, N.G., “Cell Wall Architecture and Lignin Composition of Wheat Developed in a Microgravity Environment”, Phytochemistry, Vol. 57, pp. 835–846, 2001.
[34] Paice, M.G. and Lewis, N.G., Plant Cell Wall Polymers: Biogenesis and Biodegradation, First Edition, American Chemical Society, Philadelphia, USA, 1989.
[35] Legue, V., Cabane, M., Ladouce, N., Dauphin, A., Grima-Pettenati, J. and Lapierre, C., “The Impact of Gravity on Wood Formation in Eucalyptus Globulus: Experiences in Simulated Microgravity”, 26th Ann. Int. Gravitational Physiology Meeting, Cologne, Germany, 2005.
[36] Hoson, T., Soga, K., Wakabayashi, K., Kamisaka, S. and Tanimoto, E., “Growth and Cell Wall Changes in Rice Roots During Spaceflight”, Plant Soil, Vol. 255, No. 1, pp. 19–26, 2003.
[37] Hoson, T., “Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space”, Life, Vol. 4, No. 2, pp. 205–216, 2014.
[38] Laurinavichius, R.S., Yaroschus, A.V., and Marchukajtis, A., “Metabolism of Pea Plants Grown under Space Flight Conditions”, in: N.P. Dubinin (ed.), Biologicheskie Issledovaniya na Orbitalnikh Stanziyakh Salyut, Nauka, Moscow, Russia, pp. 96–102, 1984, (In Russian).
[39] Gorovoy, L.F., Kasatkina, T.B., Popova, A.F., Kordyum, E.L., Ugolev, A.M., and Kalakutskiy, L.V., Fungi and Algae—Objects of Space Biology, in Problemsof Space Biology, Leningrad, Nauka, Russia, 1991.
[40] Salmi, M.L. and Roux, S.J., “Gene Expression Changes Induced by Space Flight in Single-Cells of the Fern Ceratopterisrichardii”, Planta, Vol. 229, No. 1, pp. 151–159, 2008.
[41] Nedukha, E.M., “Effects of Microgravity on the Structure and Function of Plant Cell Walls”, International Review of Cytology, Vol. 170, pp. 39–77, 1997.
[42] Rayle, D.L. and Cleland, R.E., “The Acid Growth Theory of Auxin-Induced Cell Elongation is Alive and Well”, Plant Physiology, Vol. 99, No. 4, pp. 1271–1274, 1992.
[43] Trewavas, A.J. and Malho, R., “Ca2+ Signaling in Plant Cells: the Big Network”, Curr. Opin. Plant Biology, Vol. 1, No. 5, pp. 428–433, 1998.
[44] Vernikos, J. and Schneider, V.S., “Space, Gravity and the Physiology of Aging: Parallel or Convergent Disciplines? A Mini-Review”, Gerontology, Vol. 56, No. 2, pp. 157–166, 2010.
[45] Knight, H., “Calcium Signaling During Abiotic Stress in Plants”, Int. Rev. Cytol., Vol. 195, pp. 269–324, 2000.
[46] Nedukha, E.M., “Long Clinostation Influence on the Localization of Free and Weakly Bound Calcium in Cell Walls of Funaria Hygrometrica Moss Protonema Cells”, Advance Space Research, Vol. 9, No. 11, pp. 83–86, 1989.
[47] Hilaire, E., Paulsen, A.Q., Brown, C.S. and Guikema, J.A., “Microgravity and Clinorotation Cause Redistribution of Free Calcium in Sweet Clover Columella Cells”, Plant Cell Physiology, Vol. 36, No. 5, pp. 831–837, 1995.
[48] Klymchuk, D.O., Brown, C.S., Chapman, D.K., Vorobyova, T.V. and Martyn, G.M., “Cytochemical Localization of Calcium in Soybean Root Cap Cells in Microgravity”, Adanced Space Research, Vol. 27, No. 5, pp. 967–972, 2001.
[49] Rasmussen, O., Klimchuk, D.A., Kordyum, E.L., Danevich, L.A., Tarnavskaya, E.B., Lozovaya, V.V., Tairbekov, M.G., Baggerud, C., and Iversen, T.H., “The Effect of Exposure to Microgravity on the Development and Structural Organization of Plant Protoplasts Flown on Biokosmos 9”, Physiologia Plantarum, Vol. 84, No. 1, pp. 162–170, 1992.
[50] Kordyum, E.L. and Danevich, L.A., “Calcium Balance Changes in Tip Growing Plant Cells under Clinorotation”, Journal of Gravitational Physiology, Vol. 2, No. 1, pp. 147–148, 1995.
[51] Shevchenko, G. and Kordyum, E.L., “Orientation of Root Hair Growth is Influenced by Simulated Microgravity”, J. Gravitational Physiology, Vol. 8, No. 1, pp. 35–36, 2001.
[52] Hausmann, N., Fengler, S., Hennig, A., Franz-Wachtel, M., Hampp, R., and Neef, M., “Cytosolic Calcium, Hydrogen Peroxide and Related Gene Expression and Protein Modulation in Arabidopsis Thaliana Cell Cultures Respond Immediately to Altered Gravitation: Parabolic Flight Data”, Plant Biology (Stuttg.), Vol. 16, pp. 120–128, 2014.
[53] Ward, J.M., Pei, Z.M., and Schroeder, J.I.”, Roles of Ion Channels in Initiation of Signal Transduction in Higher Plants”, Plant Cell, Vol. 7, No. 7, pp. 833–844, 1995.