[1] Yao, H., Xiangyun, L., Chen, Q., Xu, K., Chen, Y., Cheng, L., Liu, F., Wu, Z., Wu, H., Jin, C., Zheng, M., Wu, N., Jiang, C., and Li, L., “Patient-Derived Mutations Impact Pathogenicity of SARS-CoV-2”, CELL-D-20-01124, 2020.
[2] Faranda, D., Castillo, I.P., Hulme, O., Jézéquel, A., Lamb, J., and Thompson, E., “Asymptotic Estimates of SARS-CoV-2 Infection Counts and Their Sensitivity to Stochastic Perturbation”, Chaos an Interdiscip. J. Nonlinear Sci., Vol. 30, No. 5, p. 51107, 2020.
[3] Mittal, R., “The COVID-19 Airborne Transmission (CAT) Inequality: A Simple Mathematical Framework for Estimating Airborne Transmission of COVID-19”, arXiv Prepr. arXiv2008.00973, 2020.
[4] Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A., “Resilient and Agile Engineering Solutions to Address Societal Challenges such as Coronavirus Pandemic”, Mater. Today Chem., Vol. 17, p. 100300, 2020.
[5] van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., and Munster, V.J., “Aerosol and Surface Stability of SARS-CoV2 as Compared with SARS-CoV-1”, N. Engl. J. Med., Vol. 382, No. 16, pp. 1564–1567, 2020.
[6] Booth, T.F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y., Spence, M., Paton, S., and Henry, B., “Detection of Airborne Severe Acute Respiratory Syndrome (SARS) Coronavirus and Environmental Contamination in SARS Outbreak Units”, J. Infect. Dis., Vol. 191, No. 9, pp. 1472–1477, 2005.
[7] Asadi, S., Wexler, A.S., Cappa, C.D., Barreda, S., Bouvier, N.M., and Ristenpart, W.D., “The Coronavirus Pandemic and Aerosols: Does COVID19 Transmit via Expiratory Particles?”, Sci. Rep., Vol. 9, No.1, pp. 2348-2368, 2019.
[8] Ruiyun, L., Sen, P., Chen, B., Song, Y., Zhang, T., Yang, W., Shaman, J., “Substantial Undocumented Infection Facilitates the Rapid Dissemination of Novel Coronavirus (SARS-CoV-2)”, Science, Vol. 368, No. 6490, pp. 489–493, 2020.
[9] Yan, J., Grantham, M., Pantelic, J., De Mesquita, P.J.B., Albert, B., Liu, F., Ehrman, S., and Milton, D.K., “Infectious Virus in Exhaled Breath of Symptomatic Seasonal Influenza Cases from a College Community”, Proc. Natl. Acad. Sci., Vol. 115, No. 5, pp. 1081–1086, 2018.
[10]Verma, S., Dhanak, M., and Frankenfield, J., “Visualizing the Effectiveness of Face Masks in Obstructing Respiratory Jets”, Phys. Fluids, Vol. 32, No. 6, p. 61708, 2020.
[11]Asadi, S., Wexler, A.S., Cappa, C.D., Barreda, S.; Bouvier, N.M., and Ristenpart, W.D., “Aerosol Emission and Superemission During Human Speech Increase with Voice Loudness”, Sci. Rep., Vol. 9, No. 1, pp. 1–10, 2019.
[12]Drossinos, I. and Stilianakis, N., “What Aerosol Physics Tells Us about Airborne Pathogen Transmission”, Aerosol Science and Technology, Vol. 54, No. 6, pp. 639-643, 2020.
[13]Guo, Y., Wei, J., Ou, C., Liu, L., Sadrizadeh, S., Jin, T., Tang, L., Zhang, Y., and Li, Y., “Deposition of Droplets from the Trachea or Bronchus in the Respiratory Tract during Exhalation: A Steady-State Numerical Investigation”, Aerosol Sci. Technol., Vol. 54, No. 8, pp. 869– 879, 2020.
[14]Cui, X., Wu, W., and Ge, H., “Investigation of Airflow Field in the Upper Airway Under Unsteady Respiration Pattern Using Large Eddy Simulation Method”, Respir. Physiol. Neurobiol., p. 103468, 2020.
[15]Feng, S., Shen, C., Xia, N., Song, W., Fan, M., and Cowling, B.J., “Rational Use of Face Masks in the COVID-19 Pandemic”, Lancet Respir. Med., Vol. 8, No. 5, pp. 434–436, 2020.
[16]Kumar, V., Nallamothu, S., Shrivastava, S., Jadeja, H., Nakod, P., Andrade, P., Doshi, P., and Kumaraswamy, G., “On the Utility of Cloth Facemasks for Controlling Ejecta During Respiratory Events”, arXiv Prepr. arXiv2005.03444, 2020.
[17]Dbouk, T. and Drikakis, D., “On Respiratory Droplets and Face Masks”, Phys. Fluids, Vol. 32, No. 6, p. 63303, 2020.
[18]Cummins, C.P., Ajayi, O.J., Mehendale, F.V., Gabl, R., and Viola, I.M., “The Dispersion of Spherical Droplets in Source--Sink Flows and Their Relevance to The COVID-19 Pandemic”, Phys. Fluids, Vol. 32, No. 8, p. 83302, 2020.
[19]Bourouiba, L., Dehandschoewercker, E., and Bush, J.W., “Violent Expiratory Events: On Coughing and Sneezing”, J. Fluid Mech., Vol. 745, pp. 537–563, 2014.
[20]Weiss, P., Giddey, V., Meyer, D.W., and Jenny, P., “Evaporating Droplets in Shear Turbulence”, Phys. Fluids, Vol. 32, No. 7, p. 73305, 2020.
[21]Busco, G., Yang, S.R., Seo, J., and Hassan, Y.A., “Sneezing and Asymptomatic Virus Transmission”, Phys. Fluids, Vol. 32, No. 7, p. 73309, 2020.
[22]Diwan, S.S., Ravichandran, S., Govindarajan, R. and Narasimha, R. “Understanding Transmission Dynamics of COVID-19-Type Infections by Direct Numerical Simulations of Cough/Sneeze Flows”, Trans. Indian Natl. Acad. Eng., Vol. 5, No. 39, pp. 1-7, 2020.
[23]Dudalski, N., Mohamed, A., Mubareka, S., Bi, R., Zhang, C., and Savory, E., “Experimental Investigation of Far-Field Human Cough Airflows from Healthy and Influenza-infected Subjects”, Indoor Air, Vol. 30, No. 5, 2020.
[24]Abkarian, M., Mendez, S., Xue, N., Yang, F., and Stone, H.A., “Puff Trains in Speaking Produce Long-Range Turbulent Jet-Like Transport Potentially Relevant to Asymptomatic Spreading of Viruses”, arXiv Prepr. arXiv2006.10671, 2020.
[25]Bourouiba, L., “Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID19”, JAMA - J. Am. Med. Assoc., Vol. 323, No. 18, pp. 1837–1838, 2020.
[26]Guzman, M.I., “Bioaerosol Size Effect in COVID19 Transmission”, Int. J. Health Plann. Mgmt., Vol. 2020, pp. 1-7, 2020.
[27]Duguid, J., “The Size and the Duration of Aircarriage of Respiratory Droplets and DropletNuclei”, Epidemiol. Infect., Vol. 44, No. 6, pp. 471– 479, 1946.
[28]Gupta, J.K., Lin, C.-H., and Chen, Q., “Characterizing Exhaled Airflow from Breathing and Talking”, Indoor Air, Vol. 20, No. 1, pp. 31–39, 2010.
[29]Hansen, B. and Mygind, N., “How Often Do Normal Persons Sneeze and Blow the Nose?”, Rhinology, Vol. 40, No. 1, pp. 10–12, 2002.
[30]Wei, J. and Li, Y., “Enhanced Spread of Expiratory Droplets by Turbulence in a Cough Jet”, Build. Environ., Vol. 93, No. P2, pp. 86–96, 2015.
[31]Parienta, D., Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C., Li, Y., and Katoshevski, D., “Theoretical Analysis of the Motion and Evaporation of Exhaled Respiratory Droplets of Mixed Composition”, J. Aerosol Sci., Vol. 42, No. 1, pp. 1–10, 2011.
[32]Chen, C. and Zhao, B., “Some Questions on Dispersion of Human Exhaled Droplets in Ventilation Room: Answers from Numerical Investigation”, Indoor Air, Vol. 20, No. 2, pp. 95– 111, 2010.
[33]Moriarty, J.A. and Grotberg, J., “Flow-induced Instabilities of a Mucus-serous Bilayer”, J. Fluid Mech., Vol. 397, pp. 1–22, 1999.
[34]Malashenko, A., Tsuda, A., and Haber, S., “Propagation and Breakup of Liquid Menisci and Aerosol Generation in Small Airways”, J. Aerosol Med. Pulm. Drug Deliv., Vol. 22, No. 4, pp. 341– 353, 2009.
[35]Joseph, D.D., Beavers, G.S., and Funada, T., “Rayleigh-Taylor Instability of Viscoelastic Drops at High Weber Numbers”, J. Fluid Mech., Vol. 453, pp. 109–132, 2002.
[36]Kataoka, I., Ishii, M., and Mishima, K., “Generation and Size Distribution of Droplet in Annular Twophase Flow”, J. Fluids Eng., Vol. 105, No. 2, 1983.
[37]Romano, F., Fujioka, H., Muradoglu, M., and Grotberg, J., “Liquid Plug Formation in an Airway Closure Model”, Phys. Rev. Fluids, Vol. 4, No. 9, p. 93103, 2019.
[38]Morawska, L., “Droplet Fate in Indoor Environments, or Can We Prevent the Spread of Infection?”, Indoor Air, Vol. 16, No. 5, pp. 335– 347, 2006.
[39]Renzi, E. and Clarke, A., “Life of a Droplet: Buoyant Vortex Dynamics Drives the Fate of Microparticle Expiratory Ejecta”, Physics of Fluids, Vol. 32, No. 12, 2020.
[40]Wei, J. and Li, Y., “Airborne Spread of Infectious Agents in the Indoor Environment”, Am. J. Infect. Control, Vol. 44, No. 9, pp. S102–S108, 2016.
[41]Chaudhuri, S., Basu, S., Kabi, P., Unni, V.R., and Saha, A., “Modeling the Role of Respiratory Droplets in Covid-19 Type Pandemics”, Phys. Fluids, Vol. 32, No. 6, p. 63309, 2020.
[42]Mittal, R., Ni, R., and Seo, J.-H., “The Flow Physics of COVID-19”, J. Fluid Mech., Vol. 894, 2020.
[43]Liu, L., Li, Y., Nielsen, P.V. Wei, J., and Jensen, R.L., “Short-range Airborne Transmission of Expiratory Droplets Between Two People”, Indoor Air, Vol. 27, No. 2, pp. 452–462, 2017.
[44]Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., Yan, J., Niu, J., Zhou, J., and Luo, B., “Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China”, Sci. Total Environ., p. 138226, 2020.
[45]Verreault, D., Moineau, S., and Duchaine, C., “Methods for Sampling of Airborne Viruses”, Microbiol. Mol. Biol. Rev., Vol. 72, No. 3, pp. 413– 444, 2008.
[46]Dbouk, T. and Drikakis, D., “On Coughing and Airborne Droplet Transmission to Humans”, Phys. Fluids, Vol. 32, No. 5, p. 53310, 2020.
[47]Feng, Y., Marchal, T., Sperry, T., and Yi, H., “Influence of Wind and Relative Humidity on the Social Distancing Effectiveness to Prevent COVID19 Airborne Transmission: A Numerical Study”, J. Aerosol Sci., p. 105585, 2020.
[48]Berrouk, A.S., Lai, A.C.K., Cheung, A.C.T., and Wong, S.L., “Experimental Measurements and Large Eddy Simulation of Expiratory Droplet Dispersion in a Mechanically Ventilated Enclosure with Thermal Effects”, Build. Environ., Vol. 45, No. 2, pp. 371–379, 2010.
[49]Peng, S., Chen, Q., and Liu, E., “The Role of Computational Fluid Dynamics Tools on Investigation of Pathogen Transmission: Prevention and Control”, Sci. Total Environ., Vol. 746, p. 142090, 2020.
[50]Liang, M., Gao, L., Cheng, C., Zhou, Q., Uy, J.P., Heiner, K., and Sun, C., “Efficacy of Face Mask in Preventing Respiratory Virus Transmission: A Systematic Review and Meta-Analysis”, Travel Med. Infect. Dis., Vol. 36, p. 101751, 2020.
[51]Eikenberry, S.E., Mancuso, M., Iboi, E., Phan, T., Eikenberry, K., Kuang, Y., Kostelich, E., and Gumel, A.B. “To Mask or Not to Mask: Modeling the Potential for Face Mask Use by the General Public to Curtail the COVID-19 Pandemic”, Infect. Dis. Model., Vol. 5, pp. 293–308, 2020.
[52]Schwartz, K.L., Murti, M., Finkelstein, M., Leis, J.A., Fitzgerald-Husek, A., Bourns, L., Meghani, H., Saunders, A., Allen, V., and Yaffe, B., “Lack of COVID-19 Transmission on an International Flight”, Cmaj, Vol. 192, No. 15, p. E410, 2020.
[53]Cheng, V.C.-C., Wong, S.-C., Chuang, V.W.-M., So, S.Y.-C., Chen, J.H.-K., Sridhar, S., To, K.K.-W., Chan, J.F.-W., Hung, I.F.-N., Ho, P.-L., and Yuen, K.-Y., “The Role of Community-Wide Wearing of Face Mask for Control of Coronavirus Disease 2019 (COVID-19) Epidemic Due to Sars-Cov-2”, J. Infect., Vol. 81, No. 1, pp. 107–114, 2020.
[54]Li, Y., Wong, T., Chung, J., Guo, Y.P., Hu, J.Y., Guan, Y.T., Yao, L., Song, Q.W., and Newton, E., “In Vivo Protective Performance of n95 Respirator and Surgical Facemask”, Am. J. Ind. Med., Vol. 49, No. 12, pp. 1056–1065, 2006.
[55]Ahmed, J., Harker, A., and Edirisinghe, M., “Covid19: Facemasks, Healthcare Policies and Risk Factors in the Crucial Initial Months of a Global Pandemic”, Med. Devices Sensors, Vol. 3, No. 1, pp. 1-18, 2020.
[56]Wu, H.L., Huang, J., Zhang, C.J.P., He, Z., and Ming, W.K., “Facemask Shortage and the Novel Coronavirus Disease (COVID-19) Outbreak: Reflections on Public Health Measures”, EClinicalMedicine, Vol. 21, pp. 1-20, 2020.
[57]Amendola, L., Saurini, M.T., Di Girolamo, F., and Arduini, F., “A Rapid Screening Method for Testing the Efficiency of Masks in Breaking Down Aerosols”, Microchem. J., Vol. 157, p. 104928, 2020.
[58]Abd-Elsayed, A. and Karri, J. “Utility of Substandard Face Mask Options for Health Care Workers During the COVID-19 Pandemic”, Anesth. Analg., Vol. 131, No. 1, pp. 4-6, 2020.
[59]Neupane, B.B., Mainali, S., Sharma, A., and Giri, B., “Optical Microscopic Study of Surface Morphology and Filtering Efficiency of Face Masks”, PeerJ, Vol. 2019, No. 6, pp. 1–14, 2019.
[60]Fischer, E.P., Fischer, M.C., Grass, D., Henrion, I., Warren, W.S., and Westman, E., “Low-cost Measurement of Face Mask Efficacy for Filtering Expelled Droplets During Speech”, Sci. Adv., Vol. 6, No. 36, pp. 2–7, 2020.
[61]Yi, L., Fengzhi, L., and Qingyong, Z., “Numerical Simulation of Virus Diffusion in Facemask During Breathing Cycles”, Int. J. Heat Mass Transf., Vol. 48, No. 19–20, pp. 4229–4242, 2005.
[62]Li, Y., Guo, Y.P., Wong, K.C.T., Chung, W.Y.J., Gohel, M.D.I., and Leung, H.M.P., “Transmission of Communicable Respiratory Infections and Facemasks”, J. Multidiscip. Healthc., Vol. 1, pp. 17–27, 2008.
[63]Kumar, S. and Lee, H.P., “The Perspective of Fluid Flow Behavior of Respiratory Droplets and Aerosols Through the Facemasks in Context of SARS-CoV2”, Physics of Fluids, Vol. 32, pp. 111301, 2020.
[64]Przekwas, A. and Chen, Z., “Washing Hands and the Face May Reduce COVID-19 Infection”, Med. Hypotheses, Vol. 144, p. 110261, 2020.
[65]Chandrasekaran, B. and Fernandes, S., “‘Exercise with Facemask; Are We Handling a Devil’s Sword?’ –A Physiological Hypothesis”, Med. Hypotheses, Vol. 144, p. 110002, 2020.