نوع مقاله : علمی پژوهشی

نویسندگان

1 دانش آموخته دکتری، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران.

2 استادیار، مجتمع مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران.

چکیده

در این تحقیق سعی شده است تا با ارائة یک روش، مشکلات مربوط به بهینه‌سازی‌های چندهدفه مقید (پیاده‌­سازی، زمان محاسبات و سادگی) تا حدودی برطرف شود. این روش که بر مبنای منطق فازی است یک مساله بهینه‌­سازی چندهدفه مقید را به یک مساله بهینه‌سازی تک هدفه نامقید تبدیل می‌­کند و به این شکل بسیاری از مشکلات ذکر شده برطرف می‌شود. جهت نشان دادن کارآیی روش، سه بهینه‌سازی طراحی یک هواپیمای بی­سرنشین انجام شده است. هدف بهینه‌­سازی اول، مقایسة عملکرد این روش با دو روش معروف بهینه‌سازی چندهدفه است. هدف از بهینه‌سازی­‌های دوم و سوم نیز نشان دادن این قابلیت از روش پیشنهادی است که برحسب ضرورت طراح می‌­تواند به شکل آگاهانه درجه اهمیت را روی توابع هدف و یا قیود تغییر دهد. نتایج بهینه‌­سازی­‌ها نشان می­‌دهند که زمان محاسبات با استفاده از روش پیشنهادی کاهش یافته و همچنین با تغییر درجة اهمیت، دو طرح کاملا متفاوت به دست آمده است. ‌‌

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimization of an Unmanned Aerial Vehicle Using Fuzzy Logic and Multidisciplinary Design Optimization

نویسندگان [English]

  • Mohammad reza Setayandeh 1
  • Alireza Babaei 2

1 Ph.D. Mechanical University Complex, Malek-ashtar University of Technology, Isfahan, Iran.

2 Assistant Professor.Mechanical University Complex, Malek-ashtar University of Technology. Isfahan. Iran.

چکیده [English]

This research tries to propose a method to solve problems related to constrained multi-objective optimizations (implementation, computation time, and simplicity). This method, based on fuzzy logic, converts constrained multi-objective optimization problem into unconstrained single-objective optimization problems so many of the mentioned problems are solved. To demonstrate the efficiency of this method, three multidisciplinary design optimizations of an unmanned aerial vehicle have been performed. The aim of the first optimization is to compare the performance of the proposed method with two well-known methods of multi-objective optimizations. The purpose of the second and third optimizations is to show this capability of the proposed method that the designer, according to need, can consciously change the degree of importance on the objective functions or constraints. The results of the optimizations show that the computational time has been reduced, and two different optimal designs have been obtained by changing the degree of importance.

کلیدواژه‌ها [English]

  • Multi-objective Optimization
  • Multidisciplinary Design Optimization
  • Fuzzy Logic
  • Gentic Algorithm
  • Unmanned Aerial Vehicle
[1] Wang, P., Tian, H., Zhu, H., and Cai, G., “Multi-Disciplinary Design Optimization with Fuzzy Uncertainties and Its Application in Hybrid Rocket Motor Powered Launch Vehicle”, Chinese Journal of Aeronautics, Vol. 33, No. 5, pp. 1454-1467, 2020.
[2] Babaei, A. R., Setayandeh, M.R., and Farrokhfal, H., “Multidisciplinary Design Optimization of an Unmanned Air Vehicle and Final Solution Selection Based on Fuzzy Satisfaction Degree Function”, Aerospace Mechanics Journal, Vol. 15, No. 1, pp. 107-122, 2019.
[3]  Gonzales, L.F., Periaux, J., Srinivas, K., and Whitney, E.J., “A Generic Framework for the Design Optimization of Multidisciplinary Uav Intelligent Systems Using Evolutionary Computing”, Proceedings of The 44th AIAA Aerospace Sciences Meeting and Exhibit, Nevada, USA, January 1-20, 2006.
[4]  Allison, D.L., Morris, C.C., Schetz, J.A., Kapania, R.K., Watson, L.T., and Deaton, J.D., “Development of a Multidisciplinary Design Optimization Framework for an Efficient Supersonic Air Vehicle”, Advances in Aircraft and Spacecraft Science, Vol. 2, No. 1, pp. 17-44, 2015.
[5]  Sun, Y. and Smith, H., “Low-boom low-drag Optimization in a Multidisciplinary Design Analysis Optimization Environment”, Aerospace Science and Technology, Vol. 94, No. 1, pp. 1-29, 2019.
[6]  Roshanian, J., Bataleblu, A.A., Farghadani, M.H., and Ebrahimi, B., “Multi-objective Multidisciplinary Design Optimization of a General Aviation Aircraft”, Modares Mechanical Engineering, Vol. 17, No. 2, pp. 199-210, 2017.
[7]  Sepulveda, E., Smith, H., and Sziroczak, D., “Multidisciplinary Analysis of Subsonic Stealth Unmanned Combat Aerial Vehicles”, CEAS Aeronautical Journal, Vol. 10, No. 2, pp. 431-442, 2019.
[8]  Lui, T., Chen, C., and Chou, J., “Optimization of Short-haul Aircraft Schedule Recovery Problems Using a Hybrid Multi-objective Genetic Algorithm”, Expert Systems with Applications, Vol. 37, No. 3, pp. 2307-2315, 2010.
[9]  Jafarian, E., Razmi, J., and Baki, M.F., “An Flexible Programming Approach Based on Intuitionistic Fuzzy Optimization Abd Geometric Programming for Solving Multi-objective Nonlinear Programming Problems”, Expert Systems with Applications, Vol. 93, No. 3, pp. 245-256, 2018.
[10] Huang, H. Z., Gu, Y.K., and Du, X., “An Interactive Fuzzy Multi-objective Optimizationmethod for Engineering Design”, Engineering Applications of Artificial Intelligence, Vol. 19, No. 5, pp. 451-460, 2006.
[11] Wang, Y., Wei, T., and Qu, X., “Study of Multi-objective Fuzzy Optimization for Path Planning”, Chinese Journal of Aeronautics, Vol. 25, No. 1, pp. 51-56, 2012.
[12] Anderson, J.D.,  Aircraft Performance and Design, First Edittion, WCB McGraw-Hill, New York, USA, 1999.
[13] Sadraey, M.H., Aircraft Design: a Systems Engineering Approach, First Edittion, Wiley, New York, USA, 2013.
[14] Roskam, J.,  Aircraft Design: preliminary calculation of aerodynamic, thrust, and power characteristics, Second Edittion, Roskam Aviation and Engineering Corporation, Kansas, USA, 1990.
[15] Roskam, J.,  Airplane Flight Dynamics and Automatic Flight Controls, First Edittion, pp. 243-448, Roskam Aviation and Engineering Corporation, Kansas, USA, 1979.