[1] F. A. Cucinotta and M. Durante, "Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings," The lancet oncology, vol. 7, pp. 431-435, 2006.
[2] D. S. Kim, J.-B. Kim, E. J. Goh, W.-J. Kim, S. H. Kim, Y. W. Seo, et al., "Antioxidant response of Arabidopsis plants to gamma irradiation: genome-wide expression profiling of the ROS scavenging and signal transduction pathways," Journal of plant physiology, vol. 168, pp. 1960-1971, 2011.
[3] Y. Yokota, S. Yamada, Y. Hase, N. Shikazono, I. Narumi, A. Tanaka, et al., "Initial yields of DNA double-strand breaks and DNA fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions," Radiation research, vol. 167, pp. 94-101, 2007.
[4] A. H. Sparrow, "Relationship between chromosome volume and radiation sensitivity in plant cells," Brookhaven National Lab., Upton, NY1963.
[5] L. Comai, "The advantages and disadvantages of being polyploid," Nature reviews genetics, vol. 6, pp. 836-846, 2005.
[6] J.-H. Kim, B. Y. Chung, J.-S. Kim, and S. G. Wi, "Effects ofin Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants," Journal of Plant Biology, vol. 48, pp. 47-56, 2005.
[7] E. Kovacs and A. Keresztes, "Effect of gamma and UV-B/C radiation on plant cells," Micron, vol. 33, pp. 199-210, 2002.
[8] T. Ohnishi, K. Ohnishi, A. Takahashi, Y. Taniguchi, M. Sato, T. Nakano, et al., "Detection of DNA damage induced by space radiation in Mir and space shuttle," Journal of radiation research, vol. 43, pp. S133-S136, 2002.
[9] R. A. Kerr, "Radiation will make astronauts' trip to Mars even riskier," ed: American Association for the Advancement of Science, 2013.
[10] F. A. Mettler, "Medical effects and risks of exposure to ionising radiation," Journal of Radiological Protection, vol. 32, p. N9, 2012.
[11] P. Degan, C. Cesarone, L. Ottaggio, G. Galleri, M. Meloni, A. Zunino, et al., "Effects of simulated microgravity on metabolic activities related to DNA damage and repair in lymphoblastoid cells," Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, vol. 8, pp. P21-2, 2001.
[12] M. Hada and A. G. Georgakilas, "Formation of clustered DNA damage after high-LET irradiation: a review," Journal of radiation research, pp. 0804090035-0804090035, 2008.
[13] L. Manti, M. Durante, G. Cirrone, G. Grossi, M. Lattuada, M. Pugliese, et al., "Modelled microgravity does not modify the yield of chromosome aberrations induced by high-energy protons in human lymphocytes," International journal of radiation biology, vol. 81, pp. 147-155, 2005.
[14] S. Canova, F. Fiorasi, M. Mognato, M. Grifalconi, E. Reddi, A. Russo, et al., "“Modeled microgravity” affects cell response to ionizing radiation and increases genomic damage," Radiation research, vol. 163, pp. 191-199, 2005.
[15] M. Mognato, C. Girardi, S. Fabris, and L. Celotti, "DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with γ-rays," Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 663, pp. 32-39, 2009.
[16] S. G. Wi, B. Y. Chung, J.-S. Kim, J.-H. Kim, M.-H. Baek, J.-W. Lee, et al., "Effects of gamma irradiation on morphological changes and biological responses in plants," Micron, vol. 38, pp. 553-564, 2007.
[17] A. Tanaka, Y. Kobayashi, Y. Hase, and H. Watanabe, "Positional effect of cell inactivation on root gravitropism using heavy‐ion microbeams," Journal of experimental botany, vol. 53, pp. 683-687, 2002.
[18] B. J. Glover, "Differentiation in plant epidermal cells," Journal of experimental botany, vol. 51, pp. 497-505, 2000.
[19] G. Agati, G. Stefano, S. Biricolti, and M. Tattini, "Mesophyll distribution of ‘antioxidant’flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance," Annals of Botany, vol. 104, pp. 853-861, 2009.
[20] L. E. Graham, R. B. Kodner, M. M. Fisher, J. M. Graham, L. W. Wilcox, J. M. Hackney, et al., "Early land plant adaptations to terrestrial stress: a focus on phenolics," in The evolution of plant physiology, ed: Elsevier, 2004, pp. 155-169.
[21] M.-A. Esnault, F. Legue, and C. Chenal, "Ionizing radiation: advances in plant response," Environmental and Experimental Botany, vol. 68, pp. 231-237, 2010.
[22] R. Zaka, C. Vandecasteele, and M. Misset, "Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae)," Journal of Experimental Botany, vol. 53, pp. 1979-1987, 2002.
[23] C. Arena, V. De Micco, and A. De Maio, "Growth alteration and leaf biochemical responses in P haseolus vulgaris exposed to different doses of ionising radiation," Plant Biology, vol. 16, pp. 194-202, 2014.
[24] D. Marcu, V. Cristea, and L. Daraban, "Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings," International Journal of Radiation Biology, vol. 89, pp. 219-223, 2013.