نوع مقاله : علمی پژوهشی

نویسندگان

1 استادیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مکانیک، شـاهین شـهر ، ایـران.

2 کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، محتمع دانشگاهی مکانیک، شاهین شهر،ایران.

چکیده

هدف از این پژوهش طراحی کنترل‌کننده مقاوم  برای سیستم برداردهی تراست یک پرنده مانورپذیر بوده است. در ابتدا معادلات فضای حالت دینامیک حلقه‌باز سیستم برداردهی تراست با استفاده از روش باندگراف استخراج شده است. پس از آن پارامترهای عملکردی بحرانی سیستم با توجه به امکان‌پذیری عملیاتی و محدوده عملکرد موفق سیستم مورد ارزیابی قرار گرفته و شناسایی شدند. در ادامه توابع وزنی طراحی کنترل‌کننده مقاوم  H∞ از جمله تابع وزنی نامعینی تحت تاثیر عدم‌قطعیت‌های مشخص شده، تعیین شدند. در انتها نیز قوام کنترل مقاوم در حضور عدم‌قطعیت‌ها مورد ارزیابی قرار گرفت و پس از آن نتایج تغییر زاویه نازل برداردهی تراست در مقایسه با نتایج عملکرد یک کنترل کننده PID بهینه شده ارزیابی شد.شبیه‌سازی‌های انجام گرفته غالبا تحت نرم‌افزار متلب بوده است. نتایج این پژوهش نشان داد که روش باندگراف از اعتبار مناسبی برای مدل­سازی این سیستم برخوردار بوده و کنترل­کننده مقاوم طراحی شده نیز می­تواند پاسخگوی الزامات ماموریتی آن باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Robust H∞ Control Design for Thrust Vectoring System of a UAV

نویسندگان [English]

  • Hojat Taei 1
  • Ali Aboutalebiyan 2

1 Assistant Professor. Faculty of Mechanical Engineering, Malek Ashtar University of Technology, Iran, Shahin Shahr, Iran.

2 M.Sc. Faculty of Mechanical Engineering, Malek Ashtar University of Technology, Iran, , Shahin Shahr, Iran.

چکیده [English]

The design of a controller for a thrust vector control system of UAV has been studied through the robust  H control method. In the first, the governing space-state equations of the system have been derived using the bond graph approach. Then, the critical performance parameters of the system were evaluated and identified according to the operational feasibility and the range of successful performance of the system. Next, the weight functions of the robust H,including the indeterminate weight function under the influence of specified uncertainties, were determined. Finally, the consistency of robust control in the presence of uncertainties was evaluated and the results of deflection of thrust vectoring nozzle were compared with the performance results of an optimized PID controller. The simulation results are determined using the MATLAB environment. The results of this study showed that the bond-graph method has good validity for modeling of this system and the designed robust controller can also meet its mission requirements

کلیدواژه‌ها [English]

  • Thrust Control Vector (TVC)
  • Bond-Graph
  • Dynamic modeling
  • Nozzle
  • Optimization
  • Robust Control H∞
[1]   M. J. Hirschberg, A. C. Piccirillo, and D. C. Aronstein, Advanced Tactical Fighter to F-22 Raptor: Origins of the 21st Century Air Dominance Fighter. Reston ,VA: American Institute of Aeronautics and Astronautics, 1998.
[2]   B. MacIsaac and R. Langton, Gas Turbine Propulsion Systems. Wiley, 2011.
[3]   R. F. H. Woodberry, “Flexible joints for thrust vector control,” AIAA/SAE 11th Propuls. Conf., 1975.
[4]   S. Ashley, “Thrust vectoring: A new angle to air superiority,” Mech. Eng., vol. 117, no. 1, pp. 58–64, 1995.
[5]   D. E. Schinstock, D. A. Scott, and T. A. Haskew, “Modeling and Estimation for Electromechanical Thrust Vector Control of Rocket Engines,” J. Propuls. Power, vol. 14, no. 4, 1998.
[6]   H. Lu, Y. Li, and C. Zhu, “Robust synthesized control of electromechanical actuator for thrust vector system in spacecraft,” Comput. Math. with Appl., vol. 64, no. 5, pp. 699–708, 2012, doi: 10.1016/j.camwa.2011.10.026.
[7]   L. Felicetti, M. Sabatini, A. Pisculli, P. Gasbarri, and G. B. Palmerini, “Adaptive thrust vector control during on-orbit servicing,” AIAA Sp. 2014 Conf. Expo., no. August, 2014, doi: 10.2514/6.2014-4341.
[8]   J. M. Buffington, A. G. Sparks, and S. S. Banda, “Robust longitudinal axis flight control for an aircraft with thrust vectoring,” Automatica, vol. 30, no. 10, pp. 1527–1540, 1994, doi: 10.1016/0005-1098(94)90093-0.
[9]   P. Dobra, M. Trusca, and G. Lazea, “Robust controller for a brushless DC motor based on the gain and phase margin,” Int. Work. Adv. Motion Control. AMC, pp. 197–202, 2002, doi: 10.1109/amc.2002.1026916.
[10]  S. Ozana and M. Pies, “Application of H-infinity robust controller on PAC,” IFAC Proc. Vol., vol. 43, no. 24 PART 1, pp. 126–131, 2010, doi: 10.3182/20101006-2-pl-4019.00025.
[11]  N. Wang, W. Lin, and J. Yu, “Sliding-mode-based robust controller design for one channel in thrust vector system with electromechanical actuators,” J. Franklin Inst., vol. 355, no. 18, pp. 9021–9035, 2016, doi: 10.1016/j.jfranklin.2016.09.018.
[12]  O. A. Jasim and S. M. Veres, “A robust controller for multi rotor UAVs,” Aerosp. Sci. Technol., vol. 105, p. 106010, 2020, doi: 10.1016/j.ast.2020.106010.
[13]  S. C. Zhen, X. Peng, X. L. Liu, H. M. Li, and Y. H. Chen, “A new PD based robust control method for the robot joint module,” Mech. Syst. Signal Process., vol. 161, p. 107958, 2021, doi: 10.1016/j.ymssp.2021.107958.
[14]  H. Fang, Y. Zhu, S. Dian, G. Xiang, R. Guo, and S. Li, “Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming,” ISA Trans., Oct. 2021, doi: 10.1016/J.ISATRA.2021.10.017.
[15]  J. Hu, H. Lai, Z. Chen, X. Ma, and B. Yao, “Desired compensation adaptive robust repetitive control of a multi-DoFs industrial robot,” ISA Trans., Oct. 2021, doi: 10.1016/J.ISATRA.2021.10.002.
[16]  R. Ding, C. Ding, Y. Xu, W. Liu, and X. Yang, “Neural network-based robust integral error sign control for servo motor systems with enhanced disturbance rejection performance,” ISA Trans., Dec. 2021, doi: 10.1016/J.ISATRA.2021.12.026.
[17]  X. Wang, H. Deng, and X. Ye, “Model-free nonlinear robust control design via online critic learning,” ISA Trans., Dec. 2021, doi: 10.1016/J.ISATRA.2021.12.017.
[18]  A. K. Samantaray and B. O. Bouamama, Model-based process supervision: a bond graph approach: Springer, 2008.
[19]  W. Borutzky, Bondgraph Methodology. Springer, 2010.
[20]  Y. Li, H. Lu, S. Tian, Z. Jiao, and J. Chen, “Posture Control of Electromechanical-Actuator-Based Thrust Vector System for Aircraft Engine,” IEEE Trans. Ind. Electron. Trans. Ind. Electron., vol. 59, no. 9, pp. 3561–3571, 2012.
[21]  H. R. Taghi Rad, M. Fathi, F. Zamani Oskooi, Resistant control ∞ H. Khajeh Nasir al-Din Tusi University of Technology, 1396.