[1] M. J. Hirschberg, A. C. Piccirillo, and D. C. Aronstein, Advanced Tactical Fighter to F-22 Raptor: Origins of the 21st Century Air Dominance Fighter. Reston ,VA: American Institute of Aeronautics and Astronautics, 1998.
[2] B. MacIsaac and R. Langton, Gas Turbine Propulsion Systems. Wiley, 2011.
[3] R. F. H. Woodberry, “Flexible joints for thrust vector control,” AIAA/SAE 11th Propuls. Conf., 1975.
[4] S. Ashley, “Thrust vectoring: A new angle to air superiority,” Mech. Eng., vol. 117, no. 1, pp. 58–64, 1995.
[5] D. E. Schinstock, D. A. Scott, and T. A. Haskew, “Modeling and Estimation for Electromechanical Thrust Vector Control of Rocket Engines,” J. Propuls. Power, vol. 14, no. 4, 1998.
[6] H. Lu, Y. Li, and C. Zhu, “Robust synthesized control of electromechanical actuator for thrust vector system in spacecraft,” Comput. Math. with Appl., vol. 64, no. 5, pp. 699–708, 2012, doi: 10.1016/j.camwa.2011.10.026.
[7] L. Felicetti, M. Sabatini, A. Pisculli, P. Gasbarri, and G. B. Palmerini, “Adaptive thrust vector control during on-orbit servicing,” AIAA Sp. 2014 Conf. Expo., no. August, 2014, doi: 10.2514/6.2014-4341.
[8] J. M. Buffington, A. G. Sparks, and S. S. Banda, “Robust longitudinal axis flight control for an aircraft with thrust vectoring,” Automatica, vol. 30, no. 10, pp. 1527–1540, 1994, doi: 10.1016/0005-1098(94)90093-0.
[9] P. Dobra, M. Trusca, and G. Lazea, “Robust controller for a brushless DC motor based on the gain and phase margin,” Int. Work. Adv. Motion Control. AMC, pp. 197–202, 2002, doi: 10.1109/amc.2002.1026916.
[10] S. Ozana and M. Pies, “Application of H-infinity robust controller on PAC,” IFAC Proc. Vol., vol. 43, no. 24 PART 1, pp. 126–131, 2010, doi: 10.3182/20101006-2-pl-4019.00025.
[11] N. Wang, W. Lin, and J. Yu, “Sliding-mode-based robust controller design for one channel in thrust vector system with electromechanical actuators,” J. Franklin Inst., vol. 355, no. 18, pp. 9021–9035, 2016, doi: 10.1016/j.jfranklin.2016.09.018.
[12] O. A. Jasim and S. M. Veres, “A robust controller for multi rotor UAVs,” Aerosp. Sci. Technol., vol. 105, p. 106010, 2020, doi: 10.1016/j.ast.2020.106010.
[13] S. C. Zhen, X. Peng, X. L. Liu, H. M. Li, and Y. H. Chen, “A new PD based robust control method for the robot joint module,” Mech. Syst. Signal Process., vol. 161, p. 107958, 2021, doi: 10.1016/j.ymssp.2021.107958.
[14] H. Fang, Y. Zhu, S. Dian, G. Xiang, R. Guo, and S. Li, “Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming,” ISA Trans., Oct. 2021, doi: 10.1016/J.ISATRA.2021.10.017.
[15] J. Hu, H. Lai, Z. Chen, X. Ma, and B. Yao, “Desired compensation adaptive robust repetitive control of a multi-DoFs industrial robot,” ISA Trans., Oct. 2021, doi: 10.1016/J.ISATRA.2021.10.002.
[16] R. Ding, C. Ding, Y. Xu, W. Liu, and X. Yang, “Neural network-based robust integral error sign control for servo motor systems with enhanced disturbance rejection performance,” ISA Trans., Dec. 2021, doi: 10.1016/J.ISATRA.2021.12.026.
[17] X. Wang, H. Deng, and X. Ye, “Model-free nonlinear robust control design via online critic learning,” ISA Trans., Dec. 2021, doi: 10.1016/J.ISATRA.2021.12.017.
[18] A. K. Samantaray and B. O. Bouamama, Model-based process supervision: a bond graph approach: Springer, 2008.
[19] W. Borutzky, Bondgraph Methodology. Springer, 2010.
[20] Y. Li, H. Lu, S. Tian, Z. Jiao, and J. Chen, “Posture Control of Electromechanical-Actuator-Based Thrust Vector System for Aircraft Engine,” IEEE Trans. Ind. Electron. Trans. Ind. Electron., vol. 59, no. 9, pp. 3561–3571, 2012.
[21] H. R. Taghi Rad, M. Fathi, F. Zamani Oskooi, Resistant control ∞ H. Khajeh Nasir al-Din Tusi University of Technology, 1396.