[1] F. A. S. M. B. Malaik, "Optimizing Fuel Consumption Using PSO Algorithm in Group Flight," presented at the 7th Iranian Aerospace Association Conference, Tehran, 2007.
[2] H. Slutsken, "Why passenger jets could soon be flying in formation," Winston- salem journal, 2020.
[3] A. B. S. S. M. B. Malaik, "Study of effective parameters in optimizing the mass flight paths of commercial aircraft," presented at the 10th Conference of the Iranian Aerospace Association, Tehran, 2010.
[5] S. Ehtesham, "Development of sustainable models for discovery and presence in a flight arrangement," Master Thesis, Sharif University of Technology, Faculty of Aerospace Engineering, 2017.
[6] G. Durango, C. Lawson, and A. Z. Shahneh, "Formation flight investigation for highly efficient future civil transport aircraft," The Aeronautical Journal, vol. 120, pp. 1081-1100, 2016.
[8] I. Kroo, J. Xu, S. A. Ning, and G. Bower, "Aircraft Route Optimization for Formation Flight," 2014.
[9] A. Koloschin and N. Fezans, "Flight Physics of Fuel-Saving Formation Flight," in AIAA Scitech 2020 Forum, 2020, p. 1002.
[10] Y. Liu and E. Stumpf, "Estimation of vehicle-level fuel burn benefits of aircraft formation flight," Journal of Aircraft, vol. 55, pp. 853-861, 2018.
[11] F. Behnamnia, "Study of the possibility of developing a general model for post-behavior (post-poles) in arranged flight," Sharif University of Technology, Faculty of Aerospace Engineering, 2015.
[12] O. Bidar, "Aerodynamics and Control Aspects of Formation Flight for Induced Drag Savings," 2019.
[13] S. Hartjes, M. E. van Hellenberg Hubar, and H. G. Visser, "Multiple-phase trajectory optimization for formation flight in civil aviation," CEAS Aeronautical Journal, vol. 10, pp. 453-462, 2019.
[14] C. M. Verhagen, H. G. Visser, and B. F. Santos, "A decentralized approach to formation flight routing of long-haul commercial flights," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, pp. 2992-3004, 2019.
[15] A. B. S. S. M. B. Malaik, "Fuzzy control of group flights near commercial aircraft," presented at the 10th Conference of the Iranian Aerospace Association, Tehran, 2010.
[16] L. DeVries and D. A. Paley, "Wake sensing and estimation for control of autonomous aircraft in formation flight," Journal of Guidance, Control, and Dynamics, vol. 39, pp. 32-41, 2016.
[17] D. Buchner, "Automatic control of commercial airliners in formation flight," Stellenbosch: Stellenbosch University, 2015.
[18] B. Baleghi, "Study of how to form the flight arrangement of passenger aircraft using the logic of multi-operating systems," Master Thesis, Sharif University of Technology, Faculty of Aerospace Engineering, 2015.
[19] T. E. Kent and A. G. Richards, "Potential of Formation Flight for Commercial Aviation: Three Case Studies," Journal of Aircraft, vol. 58, pp. 320-333, 2021.
[20] L. Kovačik, A. Novík, A. Kazda, and T. Lusiak, "Automatic commercial aircraft formation flight," in 2019 New Trends in Aviation Development (NTAD), 2019, pp. 106-109.
[21] Y. Liu and Y. Zhou, "Investigation on the benefit of formation flight with a focus on the leading and trailing aircraft rotation," Aircraft Engineering and Aerospace Technology, 2018.
[22] J. Rife, "Collaborative positioning for formation flight of cargo aircraft," Journal of guidance, control, and dynamics, vol. 36, pp. 304-307, 2013.
[23] A. Gaifullin, O. Animitsa, I. Bosnyakov, P. Kuzmin, Y. N. Sviridenko, S. Suprunenko, et al., "Modeling of aircraft flight through the wake vortex," Journal of Applied Mechanics and Technical Physics, vol. 60, pp. 314-322, 2019.
[24] P. Humbert, "An Efficient Formation Flight Simulator with Extensions to Unsteady Maneuvers," 2018.
[25] D. Zhang, Y. Chen, X. Dong, Z. Liu, and Y. Zhou, "Numerical Aerodynamic Characteristics Analysis of the Close Formation Flight," Mathematical Problems in Engineering, vol. 2018, 2018.
[26] D. Vechtel, D. Fischenberg, and J. Schwithal, "Flight dynamics simulation of formation flight for energy saving using LES-generated wake flow fields," CEAS Aeronautical Journal, vol. 9, pp. 735-746, 2018.
[27] Q. Zhang and H. H. Liu, "Aerodynamics modeling and analysis of close formation flight," Journal of Aircraft, vol. 54, pp. 2192-2204, 2017.
[28] A. Inasawa, F. Mori, and M. Asai, "Detailed observations of interactions of wingtip vortices in close-formation flight," Journal of aircraft, vol. 49, pp. 206-213, 2012.
[29] J. Hogervorst, "Formation Flight in Civil Air Transport," University of Westminster, 2015.
[30] J. Brachet, R. Cleaz, A. Denis, A. Diedrich, D. King, P. Mitchell, et al., "Reference material for a proposed formation flight system," Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2004.
[31] W. A. Okolo, A. Dogan, and W. Blake, "Ride quality within conventional and delta-wing trail aircraft in formation flight," Journal of Aircraft, vol. 55, pp. 1592-1604, 2018.
[32] C. Redelinghuys and N. Bizinos, "Tentative Study of Passenger Comfort During Formation Flight Within Atmospheric Turbulence," 2013.
[33] W. Okolo, A. Dogan, and W. Blake, "Ride quality within trail aircraft in formation flight," in 7th AIAA Atmospheric and Space Environments Conference, 2015, p. 3325.
[34] E. F. Trollip and J. Engelbrecht, "Ride comfort in commercial aircraft during formation flight using conventional flight control," in 2016 IEEE Aerospace Conference, 2016, pp. 1-20.
[35] Y. Liu, "Study on the vibrational comfort of aircraft in formation flight," Aircraft Engineering and Aerospace Technology, 2020.