نوع مقاله : علمی- ترویجی

نویسنده

استادیار، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری، تهران، ایران

چکیده

همراه با پیشرفت دانش فضایی و تلاش‌ها جهت گسترش حیات به خارج از زمین، مطالعه پاسخ میکروارگانیسم‌ها به شرایط ‏نبود جاذبه بسیار اهمیت دارد چرا که بسیاری از این موجودات به طور اجتناب ناپذیری همراه با تجهیزات و سرنشین‌ها، به ‏فضا ارسال خواهند شد. در واقع قرارگیری در شرایط پر تنش فضا، ممکن است منجر به فعال شدن برخی مکانیسم‌های دفاعی ‏میکروارگانیسم‌ها ‌گردد که می‌تواند منجر به افزایش بیماری‌زایی آن‌ها شود. تاکنون، تنها پاسخ‌های چند میکروب شاخص به ‏میکروگرانشی مورد مطالعه قرار گرفته است و تکمیل این مطالعات به دلیل مشکلات تکنیکی و هزینه بالا، به تعویق افتاده ‏است اما بررسی تعاملات میزبان و میکروب‌ها، به منظور پیش بینی این رفتارها و تمهید اقدامات پیشگیرانه در هنگام پرواز ‏فضایی و حتی در زمان استقرار در ایستگاه فضایی، ضروری می‌باشد. در مطالعه پیش‌رو، مروری بر برخی تغییرات میکروب‌ها ‏مانند تغییرات رشدی، متابولیکی و تغییر بیان ژن‌ها و پروتئین‌ها در شرایط تنش فیزیکی پرواز فضایی و دستگاه‌های شبیه ساز ‏میکروگرانشی خواهیم نمود.

کلیدواژه‌ها

موضوعات

[1]   N. Khan, S. Fahad, M. Naushad, and S. Faisal, "Microbes Role in Enhancement of Agriculture Production in the World," Available at SSRN 3747774, 2020.
[2]   R. L. Bertrand, "Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division," Journal of bacteriology, vol. 201, no. 7, pp. e00697-18, 2019.
[3]   C. A. Nickerson, C. M. Ott, J. W. Wilson, R. Ramamurthy, and D. L. Pierson, "Microbial responses to microgravity and other low-shear environments," Microbiology Molecular Biology Reviews, vol. 68, no. 2, pp. 345-361, 2004.
[4]   S. Sheet, S. Yesupatham, K. Ghosh, M.-S. Choi, K. S. Shim, and Y. S. Lee, "Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes," Enzymemicrobial technology, vol. 133, p. 109440, 2020.
[5]   T. Najrana and J. Sanchez-Esteban, "Mechanotransduction as an adaptation to gravity," Frontiers in Pediatrics, vol. 4, p. 140, 2016.
[6]   J. Vandrich, F. Pfeiffer, G. Alfaro-Espinoza, and H. J. Kunte, "Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata," Extremophiles, vol. 24, no. 3, pp. 421-432, 2020.
[7]   G. Senatore, F. Mastroleo, N. Leys, and G. Mauriello, "Effect of microgravity & space radiation on microbes," Future Microbiology, vol. 13, no. 07, pp. 831-847, 2018.
[8]   B. Huang, D.-G. Li, Y. Huang, and C.-T. Liu, "Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism," Military Medical Research, vol. 5, no. 1, pp. 1-14, 2018.
[9]   Z. Gitai and L. Shapiro, "Bacterial cell division spirals into control," Proceedings of the National Academy of Sciences, vol. 100, no. 13, pp. 7423-7424, 2003.
[10] P. W. Baker and L. Leff, "The effect of simulated microgravity on bacteria from the Mir space station," Microgravity-Science Technology, vol. 15, no. 1, pp. 35-41, 2004.
[11] W. Kim et al., "Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability," BMC microbiology, vol. 13, no. 1, pp. 1-10, 2013.
[12] S. E. Van Mulders et al., "The influence of microgravity on invasive growth in Saccharomyces cerevisiae," Astrobiology, vol. 11, no. 1, pp. 45-55, 2011.
[13] P. W. Baker, M. L. Meyer, and L. G. Leff, "Escherichia coli growth under modeled reduced gravity," Microgravity-Science Technology vol. 15, no. 4, pp. 39-44, 2004.
[14] G. Horneck, D. M. Klaus, and R. L. Mancinelli, "Space microbiology," Microbiology Molecular Biology Reviews vol. 74, no. 1, pp. 121-156, 2010.
[15] M. R. Benoit and D. M. Klaus, "Microgravity, bacteria, and the influence of motility," Advances in Space Research, vol. 39, no. 7, pp. 1225-1232, 2007.
[16] J. Berdy, "Bioactive microbial metabolites," The Journal of antibiotics, vol. 58, no. 1, pp. 1-26, 2005.
[17] A. Fang, D. Pierson, S. Mishra, D. Koenig, and A. Demain, "Secondary metabolism in simulated microgravity: β-lactam production by Streptomyces clavuligerus," Journal of Industrial Microbiology Biotechnology, vol. 18, no. 1, pp. 22-25, 1997.
[18] A. Fang, D. Pierson, S. Mishra, and A. Demain, "Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production," Applied microbiology biotechnology, vol. 54, no. 1, pp. 33-36, 2000.
[19] A. Fang, D. Pierson, D. Koenig, S. Mishra, and A. Demain, "Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium," Applied Environmental Microbiology, vol. 63, no. 10, pp. 4090-4092, 1997.
[20] A. Fang, D. Pierson, S. Mishra, D. Koenig, and A. Demain, "Gramicidin S production by Bacillus brevis in simulated microgravity," Current microbiology, vol. 34, no. 4, pp. 199-204, 1997.
[21] Y. Xiao, Y. Liu, G. Wang, Z. Hao, and Y. An, "Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta)," Toxicon, vol. 56, no. 1, pp. 1-7, 2010.
[22] J. De Gelder, P. Vandenabeele, P. De Boever, M. Mergeay, L. Moens, and P. De Vos, "Raman spectroscopic analysis of Cupriavidus metallidurans LMG 1195 (CH34) cultured in low-shear microgravity conditions," Microgravity Science Technology, vol. 21, no. 3, pp. 217-223, 2009.
[23] B. Huang, N. Liu, X. Rong, J. Ruan, and Y. Huang, "Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3 (2)," Applied microbiology biotechnology, vol. 99, no. 10, pp. 4409-4422, 2015.
[24] K. Lam et al., "The effect of space flight on the production of actinomycin D by Streptomyces plicatus," Journal of Industrial Microbiology Biotechnology, vol. 29, no. 6, pp. 299-302, 2002.
[25] K. Lam, S. Mamber, E. Pack, S. Forenza, P. Fernandes, and D. Klaus, "The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid-state fermentation," Applied microbiology biotechnology, vol. 49, no. 5, pp. 579-583, 1998.
[26] A. Luo, C. Gao, Y. Song, H. Tan, and Z. Liu, "Biological responses of a Streptomyces strain producing-nikkomycin to space flight," Hang Tian yi xue yu yi xue Gong Cheng= Space Medicine Medical Engineering vol. 11, no. 6, pp. 411-414, 1998.
[27] M. Benoit et al., "Microbial antibiotic production aboard the International Space Station," Applied microbiology biotechnology, vol. 70, no. 4, pp. 403-411, 2006.
[28] J. Wilson et al., "Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq," Proceedings of the National Academy of Sciences, vol. 104, no. 41, pp. 16299-16304, 2007.
[29] A. Crabbé et al., "Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen," Applied Environmental Microbiology, vol. 77, no. 4, pp. 1221-1230, 2011.
[30] T. Li et al., "Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli," International Journal of Astrobiology, vol. 14, no. 3, pp. 435-444, 2015.
[31] J. W. Wilson et al., "Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon," Proceedings of the National Academy of Sciences, vol. 99, no. 21, pp. 13807-13812, 2002.
[32] F. Pacello, G. Rotilio, and A. Battistoni, "Low-shear modeled microgravity enhances Salmonella enterica resistance to hydrogen peroxide through a mechanism involving KatG and KatN," The open microbiology journal, vol. 6, p. 53, 2012.
[33] S. S. Orsini, A. M. Lewis, and K. C. Rice, "Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression," npj Microgravity, vol. 3, no. 1, pp. 1-10, 2017.
[34] R. G Willaert, "The growth behavior of the model eukaryotic yeast Saccharomyces cerevisiae in microgravity," Current Biotechnology, vol. 2, no. 3, pp. 226-234, 2013.