نوع مقاله : علمی پژوهشی

نویسندگان

1 استادیار، دانشکده فیزیک، دانشگاه کاشان، کاشان، ایران

2 دانش آموخته کارشناسی ارشد، دانشکده فیزیک. دانشگاه کاشان. کاشان. ایران

3 دانشیار، گروه ماده چگال، دانشکده فیزیک، دانشگاه کاشان، ایران

چکیده

در این پژوهش یک ستون پلاسما با سطح مقطع دایروی که توسط یک میدان مغناطیسی DC محوری مغناطیده شده بعنوان یک آنتن پلاسمایی مورد بررسی قرار می‌گیرد. سطح مقطع راداری و نقش پراکندگی امواج رادیویی فرودی به این آنتن مطالعه می‌گردد. آنتن پلاسمایی حاضر علاوه بر مزایایی همچون سبک بودن، نویز حرارتی کمتر در فرکانس‌های ماهواره‌ای و... نسبت به آنتن‌های فلزی، بدلیل ساختار ساده و سهولت در بازآرایی آن توسط مشخصه‌های متنوعی همچون شدت میدان مغناطیسی DC اِعمالی، توزیع جریان، فشار گاز و توان الکتریکی اعمال شده به گاز که منجر به تغییر چگالی پلاسما و فرکانس سیکلوترونی آن می‌شود، قابلیت تنظیم‌پذیری بالایی برای فرکانسهای عملیات جدید دارد. چنین ویژگی‌هایی منجر به کنترل سطح مقطع راداری و الگوی تابشی آن می‌گردد. در این مقاله اثر فرکانس پلاسمایی و فرکانس سیکلوترونی آنتن پلاسما را بر روی پراکندگی امواج رادیویی با زاویه فرود و فرکانسهای مختلف بررسی می‌کنیم.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Influence of anisotropic plasma antenna parameters on scattering pattern and radar cross section

نویسندگان [English]

  • zeinab rahmani 1
  • monireh jodeiri 2
  • Ebrahim Heidari-Semiromi 3

1 Assistant Professor, Faculty of physics, University of Kashan, Kashan, Iran

2 M.Sc. Holder, Faculty of Physics, University of Kashan. Kashan. Iran

3 Associate Professor, Department of Condensed Matter, Faculty of Physics, University of Kashan, Kashan, Iran

چکیده [English]

In this research, a plasma column with a circular cross section magnetized by a DC-axial magnetic field is investigated as a plasma antenna. The radar cross-section and the scattering pattern of radio waves landing to the antenna are studied. The present plasma antenna, in addition to advantages such as lightness, less thermal noise at satellite frequencies, etc., compared to metal antennas, due to its simple structure and ease of rearrangement by various characteristics such as the intensity of the applied DC magnetic field. The current distribution, gas pressure, and electrical power applied to the gas, which changes the plasma density and its cyclotron frequency, are highly adjustable for new operating frequencies. Such characteristics lead to controllability of the radar cross section and the scattering pattern of the antenna. In this paper, we investigate the effect of plasma frequency and cyclotron frequency of the plasma antenna on the scattering of radio waves with different incident angles and frequencies.

کلیدواژه‌ها [English]

  • Radio waves scattering
  • Plasma antenna
  • Cold collisionless plasma
  • Radar cross section
  • External constant magnetic field
[1]   J. Zeng, X. Liang, L. He, F. Guan, F. H. Lin, and J. Zi, "Single-Fed Triple-Mode Wideband Circularly Polarized Microstrip Antennas Using Characteristic Mode Analysis," IEEE Transactions on Antennas Propagation, vol. 70, no. 2, pp. 846-855, 2021.
[2]   N. Kourosdari, A. Karami Horestani, and Z. Shaterian, "Transparent Antenna Technology and Its Application in Space," Journal of Technology in Aerospace Engineering, vol. 4, no. 2, pp. 44-35, 2020.
[3]   K.-F. Lee and K.-F. Tong, "Microstrip patch antennas—basic characteristics and some recent advances," Proceedings of the IEEE, vol. 100, no. 7, pp. 2169-2180, 2012.
[4]   M.-N. Chen, W.-J. Lu, L.-J. Wang, M. Yang, and L. Zhu, "Design approach to a novel planar bisensing circularly polarized antenna," IEEE Transactions on Antennas Propagation, vol. 67, no. 11, pp. 6839-6846, 2019.
[5]   G. K. Kamboj, R. P. Yadav, and R. S. Kaler, "Development of reconfigurable plasma column antenna," IEEE Transactions on Plasma Science, vol. 49, no. 2, pp. 656-662, 2021.
[6]   Z.-L. Zhang et al., "High-efficiency inductively coupled plasma source with dual antenna hybrid scheme," IEEE Transactions on Plasma Science, vol. 46, no. 4, pp. 954-961, 2018.
[7]   D. W. Kim, S. J. You, J. H. Kim, H. Chang, and W.-Y. Oh, "Computational characterization of a new inductively coupled plasma source for application to narrow gap plasma processes," IEEE Transactions on Plasma Science, vol. 43, no. 11, pp. 3876-3882, 2015.
[8]   C. Wang, B. Yuan, W. Shi, and J. Mao, "Low-profile broadband plasma antenna for naval communications in VHF and UHF bands," IEEE Transactions on Antennas Propagation, vol. 68, no. 6, pp. 4271-4282, 2020.
[9]   A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of plasma electrodynamics. Springer, 1984.
[10] N. A. Krall and A. W. Trivelpiece, "Principles of plasma physics," American Journal of Physics, vol. 41, no. 12, pp. 1380-1381, 1973.
[11] Q. Ding, J. Ding, C.-J. Guo, and L. Shi, "On characteristics of a plasma column antenna," in 2008 International Conference on Microwave and Millimeter Wave Technology, 2008, vol. 1, pp. 413-415: IEEE.
[12] T. Anderson, I. Alexeff, and F. Dyer, "Plasma antennas for lowering co-site interference among closely spaced antennas," in 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), 2013, pp. 1-1: IEEE.
[13] M. Thiyagarajan, J. Dhanraj, E. Michael, S. Parameswaran, T. Anderson, and I. Alexeff, "Advances in Plasma Antenna Design," in IEEE Conference Record-Abstracts. 2005 IEEE International Conference on Plasma Science, 2005, pp. 350-350: IEEE.
[14] H. Ja'Afar, M. Ali, N. Halili, M. Z. Hanisah, and A. Dagang, "Analysis and design between plasma antenna and monopole antenna," in 2012 International Symposium on Telecommunication Technologies, 2012, pp. 47-51: IEEE.
[15] C. Hines and H. Bondi, "Generalized magneto-hydrodynamic formulae," in Mathematical Proceedings of the Cambridge Philosophical Society, 1953, vol. 49, no. 2, pp. 299-307: Cambridge University Press.
[16] J. R. Wait and R. MAXWELL, "Electromagnetic radiation from cylindrical structures: reprint edition," IEE Electromagnetic waves series, vol. 27, 1988.
[17] C. Balanis, "Geometrical theory of diffraction," Advanced Engineering Electromagnetics, pp. 743-764, 1989.
[18] J. R. Wait, ""Some Boundary Value Problems Involving Plasma,” Journal of Research of the National Bureau of Standards: Mathematics and mathematical physics, vol. 65, p. 137, 1961.
[19] J. Jin, "The Finite Element Method in Electromagnetics". The Finite Element Method in Electromagnetics, John Willey & Sons. Inc, 2002.