نوع مقاله : علمی پژوهشی

نویسنده

استادیار، پژوهشگاه نیرو، گروه تجهیزات دوار مکانیکی، تهران، ایران

چکیده

با توجه به کاربردهای اخیر تولید امواج قوی صوتی از ترموآکوستیک تا تمیزکاری صوتی لازم است تا حل معادلات قبلی انتشار صوت که بر مبنای خطی­سازی آن­ها بود و برای کاربردهای معمولی توسعه یافته بود اصلاح گردد. در این مقاله ابتدا معادلات انتشار صوت در یک شیپوره استخراج می‌شود. این کار با نوشتن معادلات بقای اندازه حرکت و بقای جرم آغاز می‌شود و در ادامه با تعریف تابع پتانسیل سرعت و جاگذاری آن در معادلات به یک معادله دیفرانسیل جزئی ختم می‌شود. با انتقال این معادله به حوزه فرکانس مسئله به یک معادله با شرایط مرزی تبدیل می‌شود. با اعمال شرایط مرزی یک شیپوره باز منحنی­های پاسخ فرکانسی استخراج ‌می‌شوند. این معادلات با استفاده از روش رانگ کوتا قابل حل هستند. از آنجایی که برای شیپوره‌های نمایی با فرض خطی بودن انتشار صوت پاسخ تحلیل موجود است، نتایج در این حالت اعتبارسنجی می‌شوند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of sound propagation in the horn considering nonlinear effects

نویسنده [English]

  • Asghar Najafi

Assistant Professor, Niro Research Institute, Department of Mechanical Rotating Equipment, Tehran, IRAN

چکیده [English]

Due to the recent applications of generating strong sound waves from thermo-acoustics to acoustic cleaning, it is necessary to modify the previous equations of sound propagation, which were based on linearization assumptions and developed for ordinary applications. In this paper, the sound propagation equations in a horn are first extracted. This starts with writing the equations of momentum and mass conservation and then ends with defining the potential velocity function and placing it in the partial differential equations. By transforming this equation to the frequency domain, the problem becomes a boundary value problem. Frequency response curves are extracted by applying the boundary conditions. These equations can be solved using the Range Kutta method. Since there is an analytical response for exponential horns assuming the sound propagation is linear, the results are validated in this case.

کلیدواژه‌ها [English]

  • Wave equation
  • Sonic horn
  • Macrosonics
  • Thermoacoustic
[1] H.-q. LIU, W.-q. ZHANG, Y. LU, and Z. GUO, "Working Principle and Application of Acoustic Soot Blower [J]," China Environmental Protection Industry, vol. 6, 2009.
[2]    P. Mirek, "Field Testing of Acoustic Cleaning System Working in 670Mwth CFB Boiler," Chemical and Process Engineering, vol. 34, no. 2, pp. 283-291, 2013.
[3]    D. N. Nilaj and A. Vishwanath, "Experimental and Simulation Study of Modified Acoustic Horn Design for Sonic Soot Cleaning," in Innovative Design and Development Practices in Aerospace and Automotive Engineering: Springer, 2017, pp. 117-134.
[4]    A. Shaikh and N. Deshmukh, "Simulation and Experimental Study of Acoustic Waves for Cleaning of Soot in Process Equipments," in International Conference on Communication and Signal Processing 2016 (ICCASP 2016), 2016: Atlantis Press.
[5]    L. Y. H. Q. C. Lihong and G. Fangzhong, "Influence of the shapes of resonance tubes on the fundamental frequency energy of thermoacoustic acoustic field [J]," Journal of Huazhong University of Science and Technology (Nature Science Edition), vol. 4, 2007.
[6]    G. W. Swift, "Thermoacoustic engines," The Journal of the Acoustical Society of America, vol. 84, no. 4, pp. 1145-1180, 1988.
[7]    G. W. Swift, "Thermoacoustic engines and refrigerators," Physics today, vol. 48, no. 7, 1995.
[8]    G. W. Swift, "Thermoacoustics: A unifying perspective for some engines and refrigerators," ed: Acoustical society of America, 2003.
[9]    D. Mackenzie, "Cool Sounds at 200 Decibels," Science, vol. 278, no. 5346, pp. 2060-2060, 1997.
[10]  S. Ashley, "Sound waves at work," Mechanical engineering, vol. 120, no. 03, pp. 80-84, 1998.
[11]  F. Lalande and D. Perkins, "INTRODUCTION TO ACOUSTIC COMPRESSORS," in Proceedings of the ASME Noise Control and Acoustics Division: Presented at the... ASME International Mechanical Engineering Congress and Exposition, 2000, p. 125: American Society of Mechanical Engineers.
[12] S. K. Thomas and T. M. Muruganandam, "A review of acoustic compressors and pumps from fluidics perspective," Sensors and Actuators A: Physical, vol. 283, pp. 42-53, 2018.
[13] D. T. Blackstock, "Fundamentals of physical acoustics," ed: Acoustical Society of America, 2001.
[14] A. Webster, "A mechanically blown wind instrument," Physics Review, vol. 13, p. 164, 1919.
[15] E. R. Geddes, "Acoustic waveguide theory," Journal of the Audio Engineering Society, vol. 37, no. 7/8, pp. 554-569, 1989.
[16]  P. Béquin and C. L. Morfey, "Weak nonlinear propagation of sound in a finite exponential horn," The Journal of the Acoustical Society of America, vol. 109, no. 6, pp. 2649-2659, 2001.
[17]  M. P. Mortell, K. F. Mulchrone, and B. R. Seymour, "The evolution of macrosonic standing waves in a resonator," International Journal of Engineering Science, vol. 47, no. 11-12, pp. 1305-1314, 2009.
[18]  T. S. Lucas and T. W. Van Doren, "Resonant macrosonic synthesis," ed: Google Patents, 1996.
[19]  Y. A. Ilinskii, B. Lipkens, T. S. Lucas, T. W. Van Doren, and E. A. Zabolotskaya, "Nonlinear standing waves in an acoustical resonator," The Journal of the Acoustical Society of America, vol. 104, no. 5, pp. 2664-2674, 1998.
[20]  L. D. Landau and E. M. Lifshitz, Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6. Elsevier, 2013.
[21]  G. J. Van Wylen and R. E. Sonntag, Fundamentals of classical thermodynamics (no. 536 VAN). Wiley New York, 1985.
[22]  L. F. Shampine, J. Kierzenka, and M. W. J. T. n. Reichelt, "Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c," vol. 2000, pp. 1-27, 2000.