نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد، دانشکده مهندسی، گروه مهندسی مکانیک

2 دانشگاه فردوسی مشهد-دانشکده مهندسی گروه مهندسی مکانیک

چکیده

در این تحقیق، تغییرات دامنه و طول موج تابع سینوسی که لبه حمله موج‌دار بال را تشکیل می‌دهد در شرایط پس از واماندگی موردمطالعه قرار گرفته است تا میزان اثرگذاری هر یک از این پارامترها بر روی کنترل پدیده واماندگی بررسی شود و میزان حساسیت پدیده واماندگی به هر یک از این دو پارامتر سنجیده شود. به این منظور، بال با سطح مقطع اپلر دارای لبة حمله موج‌دار مدنظر واقع شده و شبیه‌سازی عددی به‌ازای رینولدز 140000 و در زاویه حمله 22 درجه که دقیقاً بعد از واماندگی است انجام شده است. نتایج نشان داده که ارتفاع ناحیه جدا شده جریان به دامنه موج سینوسی حساسیت بیشتری دارد درحالی‌که عرض ناحیه جدا شده جریان شدیداً به طول موج تابع سینوسی وابسته است. نسبت ضرایب آیرودینامیکی نیز به افزایش دامنه موج سینوسی حساسیت بیشتری دارد و با کاهش 7.5% روبرو شده است.

کلیدواژه‌ها

موضوعات

[1] P. Watts and F. E. Fish, "The influence of passive, leading edge tubercles on wing performance," in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol, 2001: Auton. Undersea Syst. Inst. Durham New Hampshire.
[2] D. Miklosovic, M. Murray, L. Howle, and F. Fish, "Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers," Physics of fluids, vol. 16, no. 5, pp. L39-L42, 2004.
[3] D. S. Miklosovic, M. M. Murray, and L. E. Howle, "Experimental evaluation of sinusoidal leading edges," Journal of aircraft, vol. 44, no. 4, pp. 1404-1408, 2007.
[4] P. W. Weber, L. E. Howle, M. M. Murray, and D. S. Miklosovic, "Computational evaluation of the performance of lifting surfaces with leading-edge protuberances," Journal of Aircraft, vol. 48, no. 2, pp. 591-600, 2011.
[5] E. A. Van Nierop, S. Alben, and M. P. Brenner, "How bumps on whale flippers delay stall: an aerodynamic model," Physical review letters, vol. 100, no. 5, p. 054502, 2008.
[6] A. Esmaeili, H. Delgado, and J. Sousa, "Numerical simulations of Low-Reynolds-number flow past finite wings with leading-edge protuberances," Journal of Aircraft, vol. 55, no. 1, pp. 226-238, 2018.
[7] H. Delgado, A. Esmaeili, and J. M. Melo De Sousa, "Stereo PIV measurements of low-aspect-ratio Low-Reynolds-number wings with sinusoidal leading edges for improved computational modeling," in 52nd Aerospace Sciences Meeting, 2014, p. 1280.
[8] H. Jabbari, M. H. Djavareshkian, and A. Esmaeili, "Static roughness element effects on protuberance full-span wing at micro aerial vehicle application," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 236, no. 10, pp. 2074-2091, 2022.
[9] H. Jabbari, E. Ali, and M. H. Djavareshkian, "Acoustic and phase portrait analysis of leading-edge roughness element on laminar separation bubbles at low Reynolds number flow," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 236, no. 9, pp. 1782-1798, 2022.
[10] K. L. Hansen, R. M. Kelso, and B. B. Dally, "Performance variations of leading-edge tubercles for distinct airfoil profiles," AIAA journal, vol. 49, no. 1, pp. 185-194, 2011.
[11] R. Kelso, N. Rostamzadeh, and K. Hansen, "Tubercle geometric configurations: optimization and alternatives," Flow Control Through Bio-inspired Leading-Edge Tubercles: Morphology, Aerodynamics, Hydrodynamics and Applications, pp. 69-84, 2020.
[12] P. Chaitanya et al., "Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence–aerofoil interaction noise," Journal of Fluid Mechanics, vol. 818, pp. 435-464, 2017.
[13] A. Esmaeili and A. Nikkhoo, "Investigation of Thickness, Camber and Maximum Proximity Effect on Infinite Wavy Wing," Journal of Aeronautical Engineering, vol. 23, no. 1, pp. 73-85, 2021.
[14] W. G. Szymczak, J. C. Rogers, J. M. Solomon, and A. E. Bergert, "A numerical algorithm for hydrodynamic free boundary problems," Journal of Computational Physics, vol. 106, no. 2, pp. 319-336, 1993.
[15] M. Kobayashi, J. Pereira, and J. Sousa, "Comparison of several open boundary numerical treatments for laminar recirculating flows," International Journal for Numerical Methods in Fluids, vol. 16, no. 5, pp. 403-419, 1993.
[16] R. B. Langtry, F. Menter, S. Likki, Y. Suzen, P. Huang, and S. Völker, "A correlation-based transition model using local variables—part II: test cases and industrial applications," Journal of turbomachinery, pp. 423-434, 2006.
[17] J. Guerreiro and J. Sousa, "Low-Reynolds-number effects in passive stall control using sinusoidal leading edges," AIAA journal, vol. 50, no. 2, pp. 461-469, 2012.
[18] A. Esmaeili, "Experimental and computational investigation of hybrid passive-active stall control for micro aerial vehicles," Universidade DE Lisboa Instituto Superior Técnico, 2018.
[19] C. Cai et al., "Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances," Physics of fluids, vol. 29, no. 11, p. 115110, 2017.