نوع مقاله : علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، مکانیک و هوافضا، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، قزوین، ایران

2 کارشناسی‌ارشد، دانشکده مهندسی هوافضا، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

3 استادیار، گروه هوایی دانشگاه علوم انتظامی امین، تهران، ایران

چکیده

امروزه در سطح دنیا با پیشرفت روز افزون تکنولوژی‌های ساخت و طراحی، امکان ساخت کامپوزیت‌های الیاف- فلز با سفتی متغیر فراهم شد‌ه‌است. این کامپوزیت‌ها باتوجه به دارا بودن مزایای همزمان فلز و کامپوزیت، در صنایع مختلف  به ویژه در صنعت هوایی بسیار کاربرد دارند. به عنوان نوآوری در این پژوهش، تحلیل فرکانسی صفحات لایه‌ای الیاف- فلز سفتی متغیر تحت بار حرارتی با روش نوار محدود نیمه تحلیلی بر مبنای تئوری کلاسیک صفحات مورد بررسی قرار گرفته‌است. در این راستا، اثرات شرایط مرزی، لایه چینی، تعداد لایه‌ها و اثر ابعاد هندسی بر رفتار فرکانسی صفحات فوق مورد مطالعه قرار گرفته‌است. نتایج حاصله نشان ‌می‌دهد فرکانس صفحات الیاف- فلز سفتی متغیر در شرایط مرزی مختلف با افزایش درجه حرارت، ضخامت و  قیدهای صفحه افزایش ‌می‌یابد. تغییر راستای الیاف و تغییر ابعاد هندسی نیز بر فرکانس صفحات تاثیرگذار است. جهت صحه سنجی، بخشی از نتایج با چند مرجع مختلف مقایسه و درستی نتایج تایید شد‌ه‌است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Frequency Analysis of Variable Stiffness Fiber-Metal Plates with Simply Supported Edges in the Longitudinal Direction under Thermal Load using Semi - Analytical Finite Strip Method

نویسندگان [English]

  • Hadi Ghashochi-Bargh 1
  • Ali Dehghani 2
  • Ali Mirzaee Kahagh 3

1 Assistant Professor, Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University, Buein Zahra, Ghazvin, Tehran, IRAN

2 M.Sc. Student, Faculty of Aerospace Engineering, Khajeh Nasir Toosi University of Technology, Tehran, IRAN

3 Assistant Professor, Department of Aviation, Amin University of Police Sciences, Tehran, IRAN

چکیده [English]

Nowadays in the world, due to increasing development of fabrication and design, fabrication of composite materials with variable stiffness are provided. These composites are widely used in various industries, especially in the aviation industry due to the simultaneous benefits of metal and composite. As an innovation in this research, the frequency analysis of variable stiffness fiber-metal laminated plates under thermal load are investigated using the semi-analytical finite strip method based on the classical laminated plate theory. In this regard, the effects of boundary conditions, stacking sequences, number of layers and effect of geometric dimensions on the frequency behavior of mentioned plates are studied. The results show that frequency of variable stiffness fiber metal laminated plates by increasing the temperature, thickness and boundary constraints in different boundary conditions are increased. Also, the stacking sequences and plate dimensions are affected the frequency of plates. To check the validity, some of results are compared with several different references and show a good agreement.

کلیدواژه‌ها [English]

  • Variable Stiffness Fiber-Metal Laminated Plates
  • Finite Strip Method
  • Thermal Load
[1]    H. Akhavan and P. Ribeiro, "Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers," Composite Structures, vol. 93, no. 11, pp. 3040-3047, 2011.
[2]    H. G. Bargh and M. H. Sadr-Lahidjani, "Optimal design by Elitist-Genetic algorithm for maximum fundamental frequency of fiber metal laminated plates," in Key Engineering Materials, 2011, vol. 471, pp. 331-336: Trans Tech Publ.
[3]    H. Ghashochi-Bargh and M. Sadr, "PSO algorithm for fundamental frequency optimization of fiber metal laminated panels," Structural Engineering and Mechanics, vol. 47, no. 5, pp. 713-727, 2013.
[4]    R. Sourki, R. Faal, and A. Milani, "Vibration analysis of orthotropic functionally graded composite plates in thermal environment using high-order shear deformation theory: Frequency suppression by tuning the in-plane forces," International Journal of Applied and Computational Mathematics, vol. 6, pp. 1-27, 2020.
[5]    A. Gupta and S. Pradyumna, "Geometrically nonlinear dynamic analysis of variable stiffness composite laminated and sandwich shell panels," Thin-Walled Structures, vol. 173, p. 109021, 2022.
[6]    A. Rashed and E. Demir, "Design of variable stiffness composites for maximum fundamental frequency considering manufacturing constraints of tow steering," Composite Structures, vol. 284, p. 115151, 2022.
[7] N. Sharma, P. K. Swain, D. K. Maiti, and B. N. Singh, "Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination," Composite Structures, vol. 280, p. 114793, 2022.
[8] A. Milazzo, "Free vibrations analysis of cracked variable stiffness composite plates by the eXtended Ritz method," Mechanics of Advanced Materials and Structures, pp. 1-17, 2022.
[9] B. Daraei, S. Shojaee, and S. Hamzehei-Javaran, "Free vibration analysis of composite laminated beams with curvilinear fibers via refined theories," Mechanics of Advanced Materials and Structures, vol. 29, no. 6, pp. 840-849, 2022.
[10]  R. Vescovini, "Analysis of variable stiffness panels with complex geometries using R-functions," in AIAA Scitech 2022 Forum, 2022, p. 0535.
[11]  M. Merzuki, Q. Ma, M. Rejab, M. Sani, and B. Zhang, "Experimental and numerical investigation of fibre-metal-laminates (FMLs) under free vibration analysis," Materials Today: Proceedings, vol. 48, pp. 854-860, 2022.
[12]  R. M. Jones, Mechanics of composite materials. Springer, 1999.
[13]  V. Khalafi and J. Fazilati, "Free vibration analysis of variable stiffness composite laminated thin skew plates using IGA," Journal of Theoretical and Applied Vibration and Acoustics, vol. 4, no. 2, pp. 171-188, 2018.
[14]  H. Ovesy and H. Assaee, "Buckling characteristics of some composite stiffened boxes under longitudinal compression and bending using finite strip approach," in 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003, p. 1791.
[15]  H. Assaee, "Post-local buckling analysis of composite thin-walled sections using semi-finite strip method," PhD Thesis, Amirkabir University of Technology, Iran, 2008.
[16]  J. Chen and D. Dawe, "Linear transient analysis of rectangular laminated plates by a finite strip-mode superposition method," Composite structures, vol. 35, no. 2, pp. 213-228, 1996.
[17]  M. K. Apalak, M. Yildirim, and R. Ekici, "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions," Composites Science and Technology, vol. 68, no. 2, pp. 537-550, 2008.
[18]  Y. Narita, "Layerwise optimization for the maximum fundamental frequency of laminated composite plates," Journal of Sound and Vibration, vol. 263, no. 5, pp. 1005-1016, 2003.
[19]  V. Khalafi and J. Fazilati, "Supersonic flutter analysis of curvilinear fiber variable stiffness composite laminated plates," in 5th International Conference on Composites: Characterization, Fabrication and Application, CCFA-5, 2016.
[20]  S. F. M. de Almeida and J. S. Hansen, "Natural frequencies of composite plates with tailored thermal residual-stresses," International Journal of Solids and Structures, vol. 36, no. 23, pp. 3517-3539, 1999.
[21]  R. C. Rice, Metallic materials properties development and standardization (MMPDS). National Technical Information Service. cap: National Technical Information Service, 2003.