نوع مقاله : علمی پژوهشی

نویسندگان

1 گروه مهندسی هوافضا، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران

2 دانشکده مهندسی هوافضا، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در مقاله حاضر یک روش هوشمند برای انتخاب فناوری از میان مجموعه‌ای معلوم از فناوری‌های با هدف بیشینه‌سازی قابلیت اطمینان زیر سامانه پشتیبان حیات ارائه می‌شود. این رویکرد بر مد‌‌‌ل‌سازی مسئله تخصیص بهینه به صورت بهینه‌سازی ترکیباتی و حل آن به روش بهینه‌سازی وال متکی است. به این منظور، لازم است تا تغییراتی بر این روش اعمال شود تا از قابلیت پذیرش قیود بودجه جرمی، توانی و حجمی و نیز پذیرش متغیرهای دودویی برخوردار شود. روش پیشنهادی پس از صحه‌گذاری بر یک مسئله نمونه، اجرا شده و نتایج نشان می‌دهد که روش پایدار است و به ترکیبی از فناوری‌ها با قابلیت اطمینان بیشینه ضمن رعایت قیود مسئله منجر می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimal Technology Allocation of in the Life Support Subsystem with Maximum Reliability

نویسندگان [English]

  • Milad Mahmoudi 1
  • A. B. Basohbate Novinzadeh 2
  • Farshad Pazooki 1

1 Department of Aerospace Engineering, Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, IRAN

2 Faculty of Aerospace Engineering, K. N. Tusi University, Tehran, IRAN

چکیده [English]

The atmosphere of the Red Planet or Mars contains 95% of carbon dioxide, 3% of nitrogen, 1.6% of argon and only a small amount of oxygen, and in terms of concentration is about one percent of the planet's atmosphere, which makes it virtually impossible for humans to live and survive on Mars. Therefore, it is necessary to find a solution that can provide the necessary oxygen for the survival of living organisms, especially humans, in the Martian atmosphere. Photosynthesis is the most important biochemical reaction on which almost all life depends. This complex process occurs in higher plants, algae and some bacteria such as cyanobacteria. Due to the very low percentage of oxygen in the Martian atmosphere, it seems that the use of photosynthetic species that are anaerobic and tolerant of adverse ecological conditions such as cyanobacteria can provide the oxygen needed by the Red Planet.

کلیدواژه‌ها [English]

  • Optimal assignment
  • Reliability
  • Life Support System
  • Manned Spacecraft
[1] A. Ghaedamini Harouni and H. H. Mehne, "Multidisciplinary optimization for configuration of a reentry capsule considering Uncertainty", J. Aerosp. Sci. Technol., 12:4, pp. 1-17, 2020.
 [2] D. A. Burdette and J. R. R. A. Martins, "Design of a transonic wing with an adaptive morphing trailing edge via aerostructural optimization", Aerosp. Sci. Technol., 81, pp. 192- 203, 2018.
 [3] A. P. C. Cuco, F. L. de Sousa, and A. J. Silva Neto, "A multi- objective methodology for spacecraft equipment layouts", Optim. Eng., 16, pp. 165–181, 2015.
 [4] M. Mahmoudi, A. B. Novinzadeh and F. Pazooki, "Optimum conceptual design for the life support systems of manned spacecraft", Cogent Eng., 7:1, 2020.
 [5] D. W. Coit and A. E. Smith, "Reliability Optimization of Series- Parallel Systems Using a Genetic Algorithm, IEEE Trans. Reliab., 45:2, pp. 254- 266, 1996.
 [6] K. Deb, S. Gupta, D. Daum, J. Branke, A. K. Mall and D. Padmanabhan, "Reliability- Based Optimization Using Evolutionary Algorithms," in IEEE Trans. Evol. Comput., 13: 5, pp. 1054- 1074, 2009.
 [7] C. L. T. Borges and D. M. Falcão, "Optimal distributed generation allocation for reliability, losses, and voltage improvement", Int. J. Electr. Power Energy Syst., 28:6, pp. 413- 420, 2006.
 [8] M. Sheikhalishahi and M. Zhalechian, "A Mixed Integer Model for Unrelated Parallel Machine Scheduling with Job Deteriorating Effect", International Journal of Reliability, Risk and Safety: Theory and Application, 5(1), pp. 77- 84, 2022.
[9] A. Kumar, S. Pant and M. Ram, "System Reliability Optimization Using Gray Wolf Optimizer Algorithm", Qual. Reliab. Engng. Int., 33, pp. 1327– 1335, 2017.
 [10] G. Levitin and A. Lisnianski, "A new approach to solving problems of multi- state system reliability optimization", Qual. Reliab. Engng. Int., 17, pp. 93- 104, 2001.
 [11] S. Si, J. Zhao, Z. Cai and et al. "Recent advances in system reliability optimization driven by importance measures",  Front. Eng. Manag. 7, pp. 335–358, 2020.
 [12] E. Valian, S. Tavakoli, S. Mohanna and A. Haghi, "Improved cuckoo search for reliability optimization problems", Comput. Ind. Eng., 64(1), pp. 459- 468, 2013.
 [13] D. W. Coit and E. Zio, "The Evolution of System Reliability Optimization", Reliab. Eng. Syst. Saf., 192, 106259, 2019.
 [14] M. Gen and Y. S. Yun, "Soft computing approach for reliability optimization: State- of- the- art survey", Reliab. Eng. Syst. Saf., 91, pp. 1006- 1028, 259, 2006.
 [15] M.A. Farsi, The Principles of Reliability Engineering, Simaye Danesh, 2016 (in Persian).
 [16] S. Mirjalili and A. Lewis, A. "The whale optimization algorithm, Adv. Eng. Software", 95, pp. 51- 67, 2016.
 [17] I. Aljarah, H. Faris, and S., Mirjalili, S., "Optimizing connection weights in neural networks using the whale optimization algorithm", Soft Comput. 22, pp. 1- 15, 2018.
 [18] M. Abd El Aziz, A. A. Ahmed, A. Ewees, and A. E. Hassanien, "Whale optimization algorithm and moth- flame optimization for multilevel thresholding image segmentation", Expert Syst. Appl., 83, pp. 242- 256, 2017.
 [19] H.H. Mehne and S. Mirjalili, "A parallel numerical method for solving optimal control problems based on whale optimization algorithm, Knowledge- Based Syst., 151, pp. 114- 123, 2018.
 [20] S. Mirjalili and A., Lewis, "S- shaped versus V- shaped transfer functions for binary Particle Swarm Optimization", Swarm Evol. Comput., 9, pp. 1- 14, 2013.
 [21] P. Eckart, "Spaceflight Life Support and Biospherics", springer, 1996.