بررسی مروری آشکارساز VUV مبتنی بر نیمه‌هادی آلومینیم نیترید (AlN) در کاربردهای فضایی

نوع مقاله: علمی- ترویجی

نویسندگان

1 دانشگاه علم و صنعت ایران

2 دانشکده فناوریهای نوین دانشگاه علم و صنعت ایران

3 دانشکده فیزیک دانشگاه علم و صنعت ایران

4 دانشکده فیزیک ، دانشگاه علم و صنعت ایران

چکیده

آشکارسازی نور فرابنفش در علوم نجوم و هواشناسی به دلیل اطلاعات مفیدی که در اختیار می‌گذارد، مورد توجه قرار دارد. CCD هایی که بر پایة آشکارساز فرابنفش ساخته می‌شود، به انواع فیلترهای طول موج‌های بلندتر نیاز ندارد. در این صورت، نور فرابنفش به‌طور مستقیم آشکارسازی می‌شود و از این رو می‌توان گفت که حساسیت مؤثر این نوع CCD نسبت به نور فرابنفش بیش‌تر است. علاوه بر پارامترهای اساسی آشکارساز، مثل بازدهی کوانتومی، جریان تاریک و جریان نوری، حد تحمل در برابر تشعشعات پرانرژی، به‌خصوص برای آشکارسازهایی که جهت کاربرد در محیط فضایی مورد استفاده قرار می‌گیرد، اهمیت زیادی دارد. محیط‌های تشعشعی با تأثیر و تغییر در مشخصات مواد و قطعات تشکیل‌دهندة آشکارسازهای نوری به‌تدریج عملکرد آن‌ها را با افت کیفیت مواجه کرده و باعث عملکرد نامناسب و محدودیت‌هایی در استفاده از آشکارسازها می‌شود. در این مقاله، ابتدا انواع آشکارسازهای فرابنفش و مشخصات عمومی آن‌ها بررسی می‌شود. سپس، آشکارساز مبتنی بر نیمه‌هادی AlN معرفی و اثر تشعشعات بر پارامترهای آن بررسی می‌شود. در انتها، به مطالعة چند نوع از آشکارسازهای طیف VUV جهت استفاده در کاربردهای فضایی پرداخته می‌شود.

کلیدواژه‌ها


 
]1[     Zheng, W., Lin, R., Ran, J., Zhang, Z., Ji, X., and Huang, F., “Vacuum-Ultraviolet Photovoltaic Detector”, ACS Nano, Vol. 12, No. 1, pp. 425–431 2018.
]2[     Ulmer, M.P. “Future UV Detectors for Space Applications”, Proceedings of The International Society for Optical Engineering (SPIE),  Strasbourg, France, 2006.
]3[     Kozlovsky, A., Safargaleev, V., Ostgaard, N., Turunen, T., Koustov, A., Jussila, J., and Roldugin, A., “On the Motion of Dayside Auroras Caused by a Solar Wind Pressure Pulse”,  Ann. Geophys. Vol. 23, pp. 509-521, 2005.
]4[     Available: https://spaceplace.nasa.gov/aurora/.
]5[     Najmzadeh, S., “Detection by CCD and Its Applications”, M.Sc. Thesis, Department of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran, 2010 (In Persian).
]6[     Penquer, A., Gilard, O., Bardoux, A., Ecoffet, R., and Auvergne, M., “Radiation Effects on Image Sensors”, International Conference on Space Optics 2012, Ajaccio, Corsica, France, 2012.
]7[     Rivera, C., Pereiro, J., Navarro, Á., Muñoz, E., Brandt, O., and Grahn, H.T., “Advances in Group-III-Nitride Photodetectors”, The Open Electrical & Electronic Engineering Journal, Vol. 4, pp. 1–9, 2010.
]8[     Razeghi, M. and Rogalski, A., “Semiconductor Ultraviolet Detectors”, J. Appl. Phys., Vol. 79 , No. 10, pp. 7433-7473, 1996.
]9[     Walker, D. and Razeghi, M., “The Development on Nitride-based UV Photodetectors”, Opto-Electronics Review, Vol. 8, No. 1, pp. 25-42, 2000.
[10[   Klein, C.A., “Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors”, J. Appl. Phys., Vol. 39, No. 4, pp. 2029-2038, 1968.
]11[   Kheirkhah, M., “Design, Simulation and Manufacturing of  MSM Ultraviolet Detector Using Zinc Oxide Nanoparticles”, M.Sc. Thesis, Department of Electrical and Electronics Engineering, Sistan and Baluchestan University, Zahedan, Iran, 2016 (In Persian).
[12[   Zubialevich, V.Z.,  Dinh, D.V., Alam, S.N. Schulz, S., O’Reilly, E.P., and Parbrook, P.J., “Strongly Nonparabolic Variation of the Band Gap in InxAl1-xN with Low Indium Content”, Semicond. Sci. Technol.  Vol. 31, No. 2, pp. 25-36, 2016.
[13[   BenMoussa, A., Soltani, A., Schühle, U., Haenen, K., Chong, Y.M., Zhang, W.J., Dahal, R., Lin, J.Y., Jiang, H.X., Barkad, H.A., BenMoussa, B., Bolsee, D., Hermans, C., Kroth, U., Laubis, C., Mortet, V., De Jaeger, J.C., Giordanengo, B., Richter, M., Scholze, F., and Hochedez, J.F., “Recent Developments of Wide-bandgap Semiconductor Based UV Sensors”,  Diam. Relat. Mater. Vol. 18, No's. 5-8, 2009.
[14[   Kamata, H., Ishii, Y.,  Mabuchi, T.,  Naoe, K., Ajimura, S., and Sanada, K. “Single Crystal Growth of Aluminum Nitride”, Fujikura Technical Review, Vol. 16, No. 2, pp. 41-45, 2009.
[15[   Zhong, F., Huang, C., Danylyuk, Y.V., and Auner, G.W., “Development of an AlN Deep UV Detector for Space Application”, Mat. Res. Soc., Vol. 639, pp. 2–6, 2001.
[16[   Yanagida, T., Fujimoto, Y., Kawaguchi, N., and Yanagida, S., “Dosimeter properties of AlN”, Journal of the Ceramic Society of Japan, Vol. 121, No. 1421, pp. 988-991, 2013.
[17[   Giurgiutiu, V., Postolache, C., and Tudose, M., “Radiation, Temperature, and Vacuum Effects on Piezoelectric Wafer Active Sensors”, Smart Mater. Struct.,  Vol. 25, No. 3, pp. 1-25, 2016.
[18[   Bogusławski, P., “Doping Properties of C, Si, and Ge Impurities in GaN and AlN”, The American Physical Society, Vol. 56, No. 15, pp. 9496–9505, 1997.
[19[   Wang, J., Xu, F., He, C., Zhang, L., Lu, L., Wang, X., Qin, Z., and Shen, B., “High Quality AlN Epilayers Grown on Nitrided Sapphire by Metal Organic Chemical Vapor Deposition”, Sci. Rep,Vol. 7, pp.1-7, 2017.
[20[   Rashidi, A.M., Moradian, R., and Rahimimoghadam, P., “A Rreview of the Types of Aluminum Oxide Nanostructures and the Different Methods of Synthesizing These Nanostructures”, Journal of Iranian Ceramic Society, Vol. 51, No. 3, pp.45-62, 2017 (In Persian).
[21[   Li, J. and Fan, Z.Y., “200 nm Deep Ultraviolet Photodetectors Based on AlN”, Applied Physics Letters, Vol. 89, pp. 1-3, 2006.
[22[   Pantha, B.N., Dahal, R., Nakarmi, M.L., Li, J., Lin, J.Y.,  and Jiang, H.X., “Correlation Between Optoelectronic and Structural Properties and Epilayer Thickness of AlN,”Applied Physics Letters, vol. 241101, no. 2007, pp. 2005–2008, 2010.
[23[   Lohmeyer, W.Q., and Cahoy, K., “Space Radiation Environment Impacts on High Power Amplifiers and Solar Cells On-board Geostationary Communications Satellites”, Space Weather, Vol. 11, No. 8, pp. 476-488, 2015.
[24[   Zamani Moghaddam, S., Amjadifard, R., and Khoshsima, M., “Simulation of Total Ionizing Dose Radiation Effect on Telecommunication Satellite by GEANT4”, Iranian Journal of Radiation Safety and Measurement, Vol. 4, No. 3,  pp. 29-36, 2016 (In Persian).
[25[   BenMoussa, A., Soltani, A., Gerbedoen, J.C., Saito, T., Averin, S., Gissot, S., Giordanengo, B., Berger, G., Kroth, U., De Jaeger, J.C., and Gottwald, A. “Developments,Characterization and Proton Irradiation Damage Tests of AlN Detectors for VUV Solar Observations”, Nucl. Inst. Methods Phys. Res. B, vol. 312, pp. 48–53, 2013.
[26[   Xin, G.L., Li, W.M., and Tian, Z.P.Y., “Effects of High-energy Proton Irradiation on Separate Absorption and Multiplication GaN Avalanche Photodiode”,  Nucl. Sci. Tech. Vol. 3, pp. 1–8, 2018.
[27[   Chen, X., Zhu, H., Cai, J., and Wu, Z., “High-performance 4H-SiC-based Ultraviolet p-i-n Photodetector”, J. Appl. Phys., Vol. 102, No. 2, pp. 1-4, 2007.
[28[   Undaram, K.A.B.S., “Boron Carbon Nitride Based Metal-insulator-metal UV Detectors for Harsh Environment Applications” , Optics Letters, Vol. 41, No. 18, pp. 4249-4252, 2016.
[29[   Hochedez, J., Bergonzo, P., Castex, M., Dhez, P., and Hainaut, O., “Diamond UV Detectors for Future Solar Physics Missions”, Diamond and Related Materials, Vol. 10, No's. 3–7, pp. 673–680, 2001.
[30[   Malinowski, P.E., Duboz, J.Y., De Moor, P., Minoglou, K., John, J., Martin Horcajo, S., Semond, F., Frayssinet, E., Verhoeve, P., Esposito, M., Giordanengo, B., BenMoussa, A., Mertens, R., and  Van Hoof, C., “Extreme Ultraviolet Detection Using AlGaN-on-Si Inverted Schottky Photodiodes”,  Appl. Phys. Lett., Vol. 98, No. 14, pp. 1-4 2011.
[31[   Soltani, A.,  Barkad, H.A., Mattalah, M., Benbakhti, B., De Jaeger, J.C., Chong, Y.M., Zou, Y.S., Zhang, W.J., Lee, S.T., BenMoussa, A., Giordanengo, B., and Hochedez, J.F., “193 nm Deep-ultraviolet Solar-blind Cubic Boron Nitride Based Photodetectors”, Applied Physics Letters, Vol. 92, No. 5, pp. 1–4, 2008.
[32[   Moellea, C., Klosea, S., Szücs, F., Fecht, H.J., Johnston, C., Chalker, P.R., and Werner, M., “Measurement and Calculation of the Thermal Expansion Coefficient of Diamond”, Diam. Relat. Mater., Vol. 6, No's. 5–7, pp. 839-842, 1997.
[33[   Zheng, W., Lin, R., Zhang, Z., and Huang, F., “Vacuum-Ultraviolet Photodetection in Few-Layered h-BN”, ACS Appl. Mater. Interfaces, Vol. 10, No. 32, pp. 27116–27123, 2018.
]34[   [Online].Available:https://en.wikipedia.org/wiki/ Quantum_efficiency.