فناوری آنتن‌های شفاف و نقش ویژه آن‌ها در کاربردهای فضایی

نوع مقاله : علمی- ترویجی

نویسندگان

1 گروه مهندسی برق و کامپیوتر-دانشکده شریعتی، دانشگاه فنی و حرفه ای، تهران، ایران

2 پژوهشگاه هوافضا

چکیده

این مقاله به بررسی آنتن‌های شفاف به عنوان راه‌ حلی برای حل مشکلاتی مانند زیبایی، آیرودینامیک بودن آنتن در کاربردهای مختلف و نقش آن در کاربردهای فضایی می‌پردازد. در این مقاله، دو دستة کلی آنتن‌های شفاف بررسی شده است. در دستة اول، ساختار آنتن که در آنتن‌های متداول معمولاً از فلزات ساخته می‌شود، با استفاده از تکنولوژی فیلم نازک و یا با مشبک نمودن قسمت‌های فلزی آنتن محقق می‌شود. دستة دوم، آنتن‌های تشدیدکنندة دی‌الکتریک (DRA) شفاف است. آنتن‌های DRA متداول از جنس ماده‌ای غیررسانا ساخته می‌شود. بنابراین، با جایگزین کردن دی‌الکتریک‌های متداول با دی‌الکتریک‌های شفاف، مانند شیشه، می‌توان آنتن‌های DRA شفاف را محقق نمود. در انتها، به تبیین این نکته پرداخته خواهد شد که آنتن‌های شفاف می‌توانند در کاربردهای فضایی با ادغام با سایر ادوات، مانند سلول‌های خورشیدی به کاهش حجم و وزن ماهواره‌ها کمک کنند. ‌‌

کلیدواژه‌ها


[1] Lim, E.H., Leung K.W., Fang X, and Pan, Y., Transparent Antennas, John Wiley & Sons, New York, 2015.
[2]  Kanso, A., Arnaud, E., Chreim, H., Monédière, T., Thévenot, M., Beaudrouet, E., Dossou-Yovo, C., and Noguera, R., “Design and Fabrication of EBG and CWP Antennas, Using Inkjet Printing Technology”, Microw. Opt. Tech. Lett., Vol. 55, No. 7, pp. 1520–1526, 2013.
[3]  Arellano, J.A. “Inkjet-Printed Highly Transparent Solar Cell Antennas”, M.Sc. Thesis, Department of Electrical and Computer Engineering,  Utah State University, Utah, USA, 2011.
[4]  Riddle, B., Baker-Jarvis, J., and Krupka, J., “Complex Permittivity Measurements of Common Plastics over Variable Temperatures”, IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, pp. 727–733, 2003.
[5]  Adams, J.J.,  Duoss E.B.,  Malkowski, T.F.,  Motala, M.J.,  Ahn, B.Y.,  Nuzzo, R.G.,  Bernhard, J.T., and   Lewis, J.A., “Conformal Printing of Electrically Small Antennas on Three‐dimensional Surfaces”, Adv. Mater., Vol. 23, No. 11, pp. 1335–1340, 2011.
[6]  Mias, C., Tsakonas, C., Prountzos, N., Koutsogeorgis, D.C., Liew, S.C., Oswald, C., Ranson, R., Cranton, W.M., and Thomas, C.B., “Optically Transparent Microstrip Antennas”, IEE Colloquium on Antennas for Automotives, pp. 8/1–8/6, 2000.
[7]  Lee, S., Choo, M., Jung, S., and Hong, W., “Optically Transparent Nano-Patterned Antennas: A Review and Future Directions”, Appl. Sci., Vol. 8, No. 6, pp. 901, 2018.
[8]  Song, H.J.,  Hsu, T.Y., Sievenpiper, D.F., Hsu, H.P., Schaffner, J., and Yasan, E., “A Method for Improving the Efficiency of Transparent Film Antennas”, IEEE Antennas Wirel. Propag. Lett., Vol. 7, pp. 753–756, 2008.
[9]  Roo-Ons, M.J.,  Shynu, S.V., Ammann, M.J., McCormack, S.J., and Norton, B., “Transparent Patch Antenna on a-Si thin-film Glass Solar Module”, Electron. Lett., Vol. 47, No. 2, pp. 85–86, 2011.
[10]   Li, Q.L., Cheung, S.W., Wu, D., and Yuk, T.I., “Optically Transparent Dual-band MIMO Antenna, Using Micro-metal Mesh Conductive Film for WLAN System”, IEEE Antennas Wireless Propag. Lett., Vol. 16, pp. 920–923, 2016.
[11]   Peter, T., Nilavalan, R., AbuTarboush, H.F.,  and Cheung, S.W., “A Novel Technique and Soldering Method to Improve Performance of Transparent Polymer Antennas”, IEEE Antennas Wireless Propag. Lett., Vol. 9, pp. 918–921, 2010.
[12]   Peter, T., Yuk, T.I., Nilavalan, R., and Cheung, S.W.,  “A Novel Technique to Improve Gain in Transparent UWB Antennas”, 2011 Loughborough Antennas & Propagation Conference, Loughborough University, UK, 2011.
[13]   Katsounaros, A., Hao, Y., Collings, N., and Crossland, W.A.,  “Optically Transparent Antenna for Ultra Wide-band Applications”, The 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009.
[14]   Sierros, K.A., Cairns, D.R., Hecht, D.S.,  Ladous, C., Lee, R., and Niu, C., “P‐184: Highly Durable Transparent Carbon Nanotube Films for Flexible Displays and Touch‐screens”, SID Symposium Digest of Technical Papers, Vol. 41, No. 1, pp. 1942–1945, 2010.
[15]   Moon, J.-S. and Gaskill, D.K., “Graphene: Its Fundamentals to Future Applications”, IEEE Trans. Microw. Theory Tech., Vol. 59, No. 10, pp. 2702–2708, 2011.
[16]   Lee, J., Lee, S., Li, G., Petruska, M.A., Paine, D.C., and Sun, S., “A Facile Solution-phase Approach to Transparent and Conducting ITO Nanocrystal Assemblies”, J. Am. Chem. Soc., Vol. 134, No. 32, pp. 13410–13414, 2012.
[17]   Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., and Rinzler, A.G. “Transparent, Conductive Carbon Nanotube Films”, Science, Vol. 305, No. 5688, pp. 1273–1276, 2004.
[18]   Suzuki, A., Matsushita, T., Aoki, T., Mori, A., and Okuda, M., “Highly Conducting Transparent Indium Tin Oxide Films Prepared by Pulsed Laser Deposition”, Thin Solid Films, Vol. 411, No. 1, pp. 23–27, 2002.
[19]   Tuna, O., Selamet, Y., Aygun, G., and Ozyuzer, L., “High Quality ITO Thin Films Grown by DC and RF Sputtering without Oxygen”, J. Phys. D. Appl. Phys., Vol. 43, No. 5, pp. 402-411, 2010.
[20]   H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low Resistivity Transparent Conducting Al-doped ZnO Films Prepared by Pulsed Laser Deposition”, Thin Solid Films, Vol. 445, No. 2, pp. 263–267, 2003.
[21]   Dong, B.-Z., Hu, H., Fang, G.-J., Zhao, X.-Z., Zheng, D.-Y., and Sun, Y.-P., “Comprehensive Investigation of Structural, Electrical, and Optical Properties for ZnO: Al Films Deposited at Different Substrate Temperature and Oxygen Ambient”, J. Appl. Phys., Vol. 103, No. 7, pp. 737-748, 2008.
[22]   Park, S.-M., Ikegami, T., and Ebihara, K., “Effects of Substrate Temperature on the Properties of Ga-doped ZnO by Pulsed Laser Deposition”, Thin Solid Films, Vol. 513, No. 1–2, pp. 90–94, 2006.
[23]   Liu, H.Y., Avrutin, V., Izyumskaya, N., Reshchikov, M.A., Özgür, Ü., and Morkoç, H., “Highly Conductive and Optically Transparent GZO Films Grown under Metal‐rich Conditions by Plasma Assisted MBE”, Phys. status solidi (RRL)–Rapid Res. Lett., Vol. 4, No's. 3‐4, pp. 70–72, 2010.
[24]   Tiburcio-Silver, A., Sanchez-Juarez, A., and Avila-Garcia, A., “Properties of Gallium-doped ZnO Deposited Onto Glass by Spray Pyrolysis”, Sol. Energy Mater. Sol. Cells, Vol. 55, No's. 1–2, pp. 3–10, 1998.
[25]   Chen, T., Chiang, C.-C., and Chen, T.-Y., “The Characteristic of GZO Thin Film Deposited on Flexible Substrates by Using RF Magnetron Sputtering”, The 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 2014.
[26]   Ray, S., “Optical and Dielectric Properties of ZnO Nanostructures at Terahertz Frequencies”, M.S. Thesis, Graduate College, Oklahoma State University, USA, 2001.
[27]   Liu, Y. and Lian, J., “Optical and Electrical Properties of Aluminum-doped ZnO Thin Films Grown by Pulsed Laser Deposition”, Appl. Surf. Sci., Vol. 253, No. 7, pp. 3727–3730, 2007.
[28]   Kim, J., Naik, G.V., Gavrilenko, A.V., Dondapati, K., Gavrilenko, V.I., Prokes, S. M., Glembocki, O.J., Shalaev, V.M., and Boltasseva, A., “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment”, Phys. Rev. X, Vol. 3, No. 4, pp. 41037-41048, 2013.
[29]   Gordon, R.G.,  “Criteria for Choosing Transparent Conductors”, MRS Bull., Vol. 25, No. 8, pp. 52–57, 2000.
[30]   Colombel, F., Castel, X., Himdi, M., Legeay, G., Vigneron, S., and Cruz, E.M., “Ultrathin Metal Layer, ITO Film and ITO/Cu/ITO Multilayer Towards Transparent Antenna”, IET Sci. Meas. Tech., Vol. 3, No. 3, pp. 229–234, 2009.
[31]   Cohn, S.B., “Microwave Bandpass Filters Containing High-Q Dielectric Resonators”, IEEE Trans. Microw. Theory Tech., Vol. 16, No. 4, pp. 218–227, 1968.
[32]   Kajfez, D. and Guillon, P., Dielectric resonators, Scitech Publishing, Mumbai, India, 1998.
[33]   Pavio A.M. and Smith, M.A., “A 20-40-GHz Push-Push Dielectric Resonator Oscillator”, IEEE Trans. Microw. Theory Tech., Vol. 33, No. 12, pp. 1346–1349, 1985.
[34]   Luk, K.M., Leung, K.W.,  Dielectric Resonator Antennas, Research Studies Press, Baldock, England, 2003.
[35]   Petosa, A., Dielectric Resonator Antenna Handbook (Artech House Antennas and Propagation Library), Artech House, Massachusetts, USA, 2007.
[36]   Leung, K.W., Lim, E.H., and Fang, X.S., “Dielectric Resonator Antennas: From the Basic to the Aesthetic”, Proc. IEEE, Vol. 100, No. 7, pp. 2181–2193, 2012.
[37]   Lim, E.H. and Leung, K.W., Compact Multifunctional Antennas for Wireless Systems, John Wiley & Sons, New York, USA, 2012.
[38]   Lim, E.H. and Leung, K.W., “Transparent Dielectric Resonator Antennas for Optical Applications”, IEEE Trans. Antennas Propag., Vol. 58, No. 4, pp. 1054–1059, 2010.
[39]   Yasin, T. and Baktur, R., “Circularly Polarized Meshed Patch Antenna for Small Satellite Application”, IEEE Antennas Wirel. Propag. Lett., Vol. 12, pp. 1057–1060, 2013.
[40]   Yasin, T.,  “Transparent Antennas for Solar Cell Integration”, Ph.D. Desertation, Department of Electrical and Computer Engineering, Utah State University, Utah, USA, 2013.
[41]   Liu, X., Jackson, D.R., Chen, J., Liu, J., Fink, P.W., Lin, G.Y. and Neveu, N., “Transparent and Non-transparent Microstrip Antennas on a CubeSat: Novel Low-profile Antennas for CubeSats Improve Mission Reliability”, IEEE Antennas Propag. Mag., Vol. 59, No. 2, pp. 59–68, 2017.
[42]   Hautcoeur, J., Talbi, L., and Hettak, K., “Feasibility Study of Optically Transparent CPW-fed Monopole Antenna at 60-GHz ISM Bands”, IEEE Trans. Antennas Propag., Vol. 61, No. 4, pp. 1651–1657, 2012.