مطالعه تأثیر مکش جریان هوا بر حباب جدایش در میدان جریان اطراف یک استوانة مستطیلی

نوع مقاله : یادداشت فنی

نویسندگان

گروه مهندسی مکانیک، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران

چکیده

در این مقاله میدان جریان اطراف یک استوانة مستطیلی دوبعدی به صورت عددی شبیه‌سازی و اثرات مکش جریان در ناحیة حباب جدایش بررسی شده است. هدف برآورد میزان تأثیر مکش بر ابعاد حباب جدایش است. میدان جریان به صورت دو بعدی، تراکم ناپذیر، مغشوش و پایا تحلیل شده است. برای شبکه‌بندی میدان حل از نرم‌افزار گمبیت و برای تحلیل عددی از نرم‌افزار فلوئنت استفاده شده است. مسئله در دو حالت بدون مکش و با وجود مکش تحلیل شده و تأثیر مکش بر ابعاد حباب جدایش مورد بررسی قرار گرفته است. مطابق نتایج حاصل شده می‌توان گفت وجود مکش طول حباب جدایش را کوچکتر می‌کند، به‌طوری‌که در چندین حالت مختلف این طول حدود 50 درصد کاهش می‌یابد.

کلیدواژه‌ها


[1] Yeung, W., “Similarities of Pressure Induced by Separation Bubble in Grid-generated Turbulent Flow”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, pp. 293-309, 2005.
[2] Almeida, O., Mansur, S., and Silveira-Neto, A.,“On the Flow Past Rectangular Cylinders: Physical Aspects and Numerical Simulation”, Therm. Eng., Vol. 7, pp. 55-64, 2008.
[3] Liaw, K.,“Simulation of Flow Around Bluff Bodies and Bridge Deck Sections, Using CFD”, Ph.D. Dissertation, School of Civil Engineering, University of Nottingham, England, 2005.
[4] Kabiri-Samani, A.R. and Golmohammadi, M.H., “Analytical Approach for Boundary Layer Control around Elliptical Cylinders by Suction‏”, Amirkabir Journal of Science & Research (Civil & Enviromental Engineering), Vol. 48, No. 1, pp. 1-12, 2016 (In Persian).
[5] Nishioka, M. and Sato, H.,“Measurements of Velocity Distributions in the Wake of a Circular Cylinder at Low Reynold Numbers”, Journal of Fluid Mechanics, Vol. 65, pp. 97-112, 1974.
[6] Okajima, A., “Strouhal Numbers of Rectangular Cylinders”, Journal of Fluid Mechanics, Vol. 123, pp. 379-398, 1982.
[7] Courchesne, J. and Laneville, A., “A Comparison of Correction Methods Used in the Evaluation of Drag Coefficient Measurements for Two-dimensional Rectangular Cylinders”, Journal of Fluids Engineering, Vol. 101, pp. 506-510, 1979.
[8] Ohya, Y., Nakamura, Y.,Ozono, S.,Tsuruta, H., and Nakayama, R., “A Numerical Study of Vortex Shedding from Flat Plates with Square Leading and Trailing Edges”, Journal of Fluid Mechanics, Vol. 236, pp. 445-460, 1992.
[9] Norberg, C., “Flow around Rectangular Cylinders: Pressure Forces and Wake Frequencies”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp. 187-196, 1993.
[10] Yu, D.h. and Kareem, A.,“Two-dimensional Simulation of Flow around Rectangular Prisms”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 62, pp. 131-161, 1996.
[11] Noda, H. and Nakayama, A., “Free-stream Turbulence Effects on the Instantaneous Pressure and Forces on Cylinders of Rectangular Cross Section”, Experiments in fluids, Vol. 34, pp. 332-344, 2003.
[12] Iaccarino, G., Ooi, A., Durbin, P., and Behnia, M., “Reynolds Averaged Simulation of Unsteady Separated Flow”, International Journal of Heat and Fluid Flow, Vol. 24, pp. 147-156, 2003.
[13] Cao, S., Zhou, Q., and Zhou, Z.,“Velocity Shear Flow over Rectangular Cylinders with Different Side Ratios”, Computers & Fluids, Vol. 96, pp. 35-46, 2014.
[14] Daniels, S.J., Castro, I.P., and Xie, Z.T., “Numerical Analysis of Freestream Turbulence Effects on the Vortex-induced Vibrations of a Rectangular Cylinder”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 153, pp. 13-25, 2016.
[15] Noda, H. and Nakayama, A., “Analysis of Aeroelastic Vibration of Rectangular Cylinder in a Uniform Flow by a Large Eddy Simulation Formulated in a Non-inertial Moving Coordinate System”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 166, pp. 29-36, 2017.
[16] Ortega-Casanova, J., “On the Onset of Vortex Shedding from 2D Confined Rectangular Cylinders Having Different Aspect Ratios: Application to Promote Mixing Fluids”, Chemical Engineering and Processing: Process Intensification, Vol. 120, pp. 81-92, 2017.
[17] Mannini, C., Marra, A.M., Pigolotti, L., and Bartoli, G., “The Effects of Free-stream Turbulence and Angle of Attack on the Aerodynamics of a Cylinder with Rectangular 5:1 Cross Section”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 161, pp. 42-58, 2017.
[18] Talesh Bahrami, H., Parhizkar H., and Ghasemlooy, S., “Numerical Study of the Effect of Flow Suction on the Reduction of Acoustic Noise Due to the Flow on a Three-dimensional Cylinder”, Modares Mechanical Engineering, Vol. 19, No. 5, pp. 1049-1059, 2019 (In Persian).
[19] Shams Taleghani, A., “Numerical and Parametric Investigation of Suction over a Cylinder for Reduction of Flow Unsteadiness and Vortex”, Journal of Mechanical Engineering, Vol. 49, No. 3, pp. 183-192, 2019 (In Persian).
[20] Miranda, W.R. and Rezende, A.L.T., “Rans Models Applied In a Flow over A Rounded Edge”, The 22nd International Congress of Mechanical Engineering (COBEM 2013), RibeirãoPreto, SP, Brazil, 2013.
[21] Djilali, N. and Gartshore, I.S., “Turbulent Flow around a Bluff Rectangular Plate. Part I: Experimental Investigation”, ASME J. Fluids Eng., Vol. 113, pp. 51-59, 1991.
[22] Suksangpanomrung, A., Djilali, N., and Moinat, P., “Large Eddy Simulation of Separated Flow over a Bluff Rectangular Plate”, International Journal of Heat and Fluid Flow, Vol. 21, pp. 55-663, 2000.
[23] Yaghoubi, M. and Mahmoodi, S., “Experimental Study of Turbulent Separated and Reattached Flow over a Finite Blunt Plate”, Experimental Thermal and Fluid Science, Vol. 29, pp. 105-112, 2004.